Self-Supervised Multi-Channel Hypergraph Convolutional Network for Social Recommendation

超图 计算机科学 成对比较 推荐系统 利用 频道(广播) 关系(数据库) 订单(交换) 任务(项目管理) 数据挖掘 理论计算机科学 机器学习 情报检索 人工智能 社会化媒体 社交网络(社会语言学) 万维网 计算机网络 经济 财务 管理 计算机安全 离散数学 数学
作者
Junliang Yu,Hongzhi Yin,Jundong Li,Qinyong Wang,Nguyễn Quốc Hưng,Xiangliang Zhang
出处
期刊:The Web Conference 被引量:149
标识
DOI:10.1145/3442381.3449844
摘要

Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complex and user relations can be high-order. Hypergraph provides a natural way to model high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. Extensive experiments on multiple real-world datasets demonstrate the superiority of the proposed model over the current SOTA methods, and the ablation study verifies the effectiveness and rationale of the multi-channel setting and the self-supervised task. The implementation of our model is available via https://github.com/Coder-Yu/RecQ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyl发布了新的文献求助20
刚刚
lvxsit发布了新的文献求助10
刚刚
刚刚
1秒前
NiLou发布了新的文献求助10
1秒前
jiangmingjiao完成签到,获得积分10
1秒前
Jc完成签到 ,获得积分10
1秒前
美少女壮士完成签到,获得积分10
1秒前
噢锦完成签到,获得积分10
2秒前
aaa福完成签到,获得积分10
3秒前
myco发布了新的文献求助10
3秒前
3秒前
LR发布了新的文献求助10
4秒前
ptsoup完成签到,获得积分10
4秒前
blingbling发布了新的文献求助10
4秒前
朱小燕关注了科研通微信公众号
4秒前
复杂诗蕊发布了新的文献求助10
5秒前
香蕉半邪发布了新的文献求助10
5秒前
无花果应助ddz采纳,获得10
5秒前
6秒前
lvxsit完成签到,获得积分10
7秒前
领导范儿应助Lynn采纳,获得10
7秒前
7秒前
NiLou完成签到,获得积分10
8秒前
8秒前
斯文败类应助拔丝香芋采纳,获得30
8秒前
冯成风发布了新的文献求助30
8秒前
李健应助Weirdo采纳,获得10
9秒前
9秒前
英俊的铭应助皇甫契采纳,获得10
10秒前
研友_LJGXgn完成签到,获得积分10
10秒前
10秒前
Roach完成签到,获得积分10
10秒前
Jasper应助怕黑三毒采纳,获得10
11秒前
安静的乌冬面完成签到 ,获得积分10
11秒前
11秒前
csy完成签到,获得积分10
12秒前
melody完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798