A machine learning approach to the prediction of transport and thermodynamic processes in multiphysics systems - heat transfer in a hybrid nanofluid flow in porous media

努塞尔数 多物理 纳米流体 贝扬数 传热 机械 多孔介质 计算机科学 输运现象 热力学 材料科学 机械工程 物理 工程类 多孔性 湍流 有限元法 雷诺数 复合材料
作者
Rasool Alizadeh,Javad Mohebbi Najm Abad,Abolhasan Ameri,Mohammad Reza Mohebbi,A. Mehdizadeh,Dan Zhao,Nader Karimi
出处
期刊:Journal of The Taiwan Institute of Chemical Engineers [Elsevier BV]
卷期号:124: 290-306 被引量:134
标识
DOI:10.1016/j.jtice.2021.03.043
摘要

Comprehensive analyses of transport phenomena and thermodynamics of complex multiphysics systems are laborious and computationally intensive. Yet, such analyses are often required during the design of thermal and process equipment. As a remedy, this paper puts forward a novel approach to the prediction of transport behaviours of multiphysics systems, offering significant reductions in the computational time and cost. This is based on machine learning techniques that utilize the data generated by computational fluid dynamics for training purposes. The physical system under investigation includes a stagnation-point flow of a hybrid nanofluid (Cu−Al2O3/Water) over a blunt object embedded in porous media. The problem further involves mixed convection, entropy generation, local thermal non-equilibrium and non-linear thermal radiation within the porous medium. The SVR (Support Machine Vector) model is employed to approximate velocity, temperature, Nusselt number and shear-stress as well as entropy generation and Bejan number functions. Further, PSO meta-heuristic algorithm is applied to propose correlations for Nusselt number and shear stress. The effects of Nusselt number, temperature fields and shear stress on the surface of the blunt-body as well as thermal and frictional entropy generation are analysed over a wide range of parameters. Further, it is shown that the generated correlations allow a quantitative evaluation of the contribution of a large number of variables to Nusselt number and shear stress. This makes the combined computational and artificial intelligence (AI) approach most suitable for design purposes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NMZN发布了新的文献求助10
刚刚
2秒前
2秒前
胡胡胡发布了新的文献求助10
2秒前
靖123456完成签到,获得积分10
3秒前
pcns完成签到,获得积分10
4秒前
贪玩白萱发布了新的文献求助10
4秒前
李健的小迷弟应助Moihan采纳,获得10
5秒前
linkman发布了新的文献求助10
5秒前
james发布了新的文献求助30
5秒前
6秒前
归陌完成签到 ,获得积分10
6秒前
6秒前
斯文败类应助柔弱曼冬采纳,获得10
7秒前
7秒前
8秒前
8秒前
9秒前
skr完成签到,获得积分10
9秒前
9秒前
李萌萌发布了新的文献求助20
10秒前
靓丽的素发布了新的文献求助10
11秒前
奋斗完成签到 ,获得积分10
11秒前
sian发布了新的文献求助30
12秒前
13秒前
鳄鱼队长完成签到,获得积分10
13秒前
Pepsi完成签到,获得积分10
14秒前
小蘑菇应助贪狼先森采纳,获得10
14秒前
14秒前
16秒前
xdedd完成签到,获得积分10
16秒前
17秒前
20秒前
西陆完成签到,获得积分10
20秒前
满意的柏柳完成签到 ,获得积分10
20秒前
柔弱曼冬发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
小绵羊发布了新的文献求助10
22秒前
自觉紫安发布了新的文献求助10
23秒前
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956295
求助须知:如何正确求助?哪些是违规求助? 3502477
关于积分的说明 11107954
捐赠科研通 3233164
什么是DOI,文献DOI怎么找? 1787196
邀请新用户注册赠送积分活动 870506
科研通“疑难数据库(出版商)”最低求助积分说明 802105