Different climate sensitivity of particulate and mineral-associated soil organic matter

环境科学 表土 土壤碳 固碳 土壤有机质 土壤水分 气候变化 耕地 土壤科学 地质学 生态学 二氧化碳 海洋学 生物 农业
作者
Emanuele Lugato,Jocelyn M. Lavallee,Michelle L. Haddix,Panos Panagos,M. Francesca Cotrufo
出处
期刊:Nature Geoscience [Springer Nature]
卷期号:14 (5): 295-300 被引量:440
标识
DOI:10.1038/s41561-021-00744-x
摘要

Soil carbon sequestration is seen as an effective means to draw down atmospheric CO2, but at the same time warming may accelerate the loss of extant soil carbon, so an accurate estimation of soil carbon stocks and their vulnerability to climate change is required. Here we demonstrate how separating soil carbon into particulate and mineral-associated organic matter (POM and MAOM, respectively) aids in the understanding of its vulnerability to climate change and identification of carbon sequestration strategies. By coupling European-wide databases with soil organic matter physical fractionation, we assessed the current geographical distribution of mineral topsoil carbon in POM and MAOM by land cover using a machine-learning approach. Further, using observed climate relationships, we projected the vulnerability of carbon in POM and MAOM to future climate change. Arable and coniferous forest soils contain the largest and most vulnerable carbon stocks when cumulated at the European scale. Although we show a lower carbon loss from mineral topsoils with climate change (2.5 ± 1.2 PgC by 2080) than those in some previous predictions, we urge the implementation of coniferous forest management practices that increase plant inputs to soils to offset POM losses, and the adoption of best management practices to avert the loss of and to build up both POM and MAOM in arable soils. Particulate and mineral-associated soil organic carbon have different climate sensitivity and distributions in Europe, according to analyses of measurements of soil carbon fractions from 352 topsoils.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
马家辉发布了新的文献求助10
1秒前
在水一方应助chen采纳,获得10
1秒前
FashionBoy应助Menahemxie采纳,获得10
1秒前
Jared应助玩命的芝麻采纳,获得10
1秒前
文静季节完成签到,获得积分20
1秒前
1秒前
吉吉完成签到,获得积分10
2秒前
HEYUYU发布了新的文献求助10
2秒前
moonpie关注了科研通微信公众号
3秒前
3秒前
3秒前
专注的曼卉发布了新的文献求助100
3秒前
haimianbaobao发布了新的文献求助10
3秒前
4秒前
4秒前
123发布了新的文献求助10
5秒前
5秒前
科目三应助Khr1stINK采纳,获得10
5秒前
5秒前
5秒前
考博圣体完成签到,获得积分10
6秒前
gf完成签到,获得积分10
6秒前
Tsuki完成签到 ,获得积分10
6秒前
小马甲应助平淡的白云采纳,获得10
6秒前
冷月寒寒大魔王完成签到,获得积分20
6秒前
6秒前
今后应助雪松采纳,获得10
7秒前
7秒前
鲸鱼发布了新的文献求助10
7秒前
7秒前
爆米花应助干净冬莲采纳,获得10
7秒前
7秒前
8秒前
8秒前
quan发布了新的文献求助10
8秒前
叮当完成签到,获得积分20
8秒前
8秒前
9秒前
云野华完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482