计算机科学
点云
人工智能
计算机视觉
激光雷达
分割
RGB颜色模型
目标检测
推论
语义学(计算机科学)
语义映射
传感器融合
图像分割
同时定位和映射
图像融合
遥感
图像(数学)
机器人
移动机器人
地理
程序设计语言
作者
Simon Bultmann,Jan Quenzel,Sven Behnke
标识
DOI:10.1109/ecmr50962.2021.9568812
摘要
Unmanned aerial vehicles (UAVs) equipped with multiple complementary sensors have tremendous potential for fast autonomous or remote-controlled semantic scene analysis, e.g., for disaster examination.In this work, we propose a UAV system for real-time semantic inference and fusion of multiple sensor modalities. Semantic segmentation of LiDAR scans and RGB images, as well as object detection on RGB and thermal images, run online onboard the UAV computer using lightweight CNN architectures and embedded inference accelerators. We follow a late fusion approach where semantic information from multiple modalities augments 3D point clouds and image segmentation masks while also generating an allocentric semantic map.Our system provides augmented semantic images and point clouds with ≈9Hz. We evaluate the integrated system in real-world experiments in an urban environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI