Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning

聚类分析 深度学习 k均值聚类 计算机科学 人工智能 模式识别(心理学)
作者
Helong Yu,Jiawen Liu,Chengcheng Chen,Ali Asghar Heidari,Qian Zhang,Huiling Chen,Majdi Mafarja,Hamza Turabieh
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 143824-143835 被引量:90
标识
DOI:10.1109/access.2021.3120379
摘要

Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王某人发布了新的文献求助10
刚刚
automan发布了新的文献求助40
刚刚
Hello应助阳光的向雁采纳,获得10
刚刚
2秒前
小袁完成签到,获得积分10
2秒前
lin完成签到,获得积分20
3秒前
4秒前
barrycream完成签到,获得积分10
5秒前
sisyphus完成签到,获得积分10
6秒前
大反应釜完成签到,获得积分10
7秒前
小王同学完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
海盗船长完成签到,获得积分10
9秒前
星辰大海应助zmt1134采纳,获得10
10秒前
神雕侠发布了新的文献求助10
10秒前
kiyo发布了新的文献求助30
13秒前
14秒前
小王同学发布了新的文献求助10
14秒前
丢丢完成签到,获得积分10
20秒前
谢钰完成签到 ,获得积分10
24秒前
shanshan完成签到,获得积分10
24秒前
25秒前
阳光的向雁完成签到,获得积分10
26秒前
啊张应助guo采纳,获得10
27秒前
puhu应助guo采纳,获得10
27秒前
哇哈完成签到 ,获得积分10
27秒前
包容若风完成签到,获得积分10
28秒前
29秒前
29秒前
29秒前
日月星陈发布了新的文献求助10
31秒前
31秒前
威武语儿完成签到,获得积分10
31秒前
Balance Man发布了新的文献求助10
32秒前
科研通AI2S应助Jerryluo采纳,获得10
32秒前
烟花应助标致幻然采纳,获得10
32秒前
巴图鲁发布了新的文献求助10
34秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312412
求助须知:如何正确求助?哪些是违规求助? 2945030
关于积分的说明 8522726
捐赠科研通 2620818
什么是DOI,文献DOI怎么找? 1433096
科研通“疑难数据库(出版商)”最低求助积分说明 664837
邀请新用户注册赠送积分活动 650217