Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goals (SDGs)

红树林 地理 可持续发展 农林复合经营 中国 环境资源管理 环境保护 生态学 环境科学 生物 考古
作者
Mingming Jia,Zongming Wang,Dehua Mao,Chunlin Huang,Chunyan Lu
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:66 (30): 3886-3901 被引量:71
标识
DOI:10.1360/tb-2020-1412
摘要

Mangrove forests are tropical trees and shrubs that grow in sheltered coastlines, mudflats, and river banks in many parts of the world. These forests are rated amidst the most productive natural ecosystems on the earth, and are ecologically and socioeconomically important because of their crucial roles in coastal ecosystem protection. However, these forests are declining at an alarming rate, which is possibly more rapid than that of inland tropical forests. This serious loss has prompted a worldwide movement to protect and promote the sustainable use of mangrove forests. Recently, many governments adopted the United Nations' Sustainable Development Goals (SDGs). The SDGs present an opportunity for nations to set realistic targets for achieving sustainable use of natural resources and environmental capital. Relevant to mangrove conservation, a range of targets were established for implementation by the year 2020, including Targets 6.6, 14.2, 14.5, and 15.2. To date, mangrove forests have been protected and restored for decades in China. However, little is known about achievements of China's SDGs implementation on mangrove forests. The issue highlighted the need for a long-term holistic view of China's mangrove forests dynamics. Although there have been multiple national datasets of China's mangrove forests, few studies focused specifically on mangrove forests and their surrounding land covers. Thus, the objectives of this study are: (1) to apply a systematic remote sensing method across the entire coast of China, and build a new dataset of long-term China's mangrove forests and surrounding land covers in 1973, 1980, 1990, 2000, 2010, 2015 (the first year of SDGs), and 2020 (the complete year of mangrove related SDGs); (2) to quantify the spatial-temporal changes of mangrove forests and conversion between mangrove forests and other coastal land covers; and (3) to discuss the achievements of China's SDGs implementation on mangrove forests. In this study, we applied a hybrid object-based and hierarchical classification method to Landsat series imagery and achieved a high accuracy dataset of China's mangrove forests and surrounding land covers. Results showed that: (1) on national scale, area of mangrove forests declined from 48801 to 18602 ha between 1973 and 2000, then partially recovered to 28010 ha in 2020; (2) the lost mangrove forests were mainly changed to croplands and aquaculture ponds, while the restored mangrove forests were mainly converted from tidal flats; and (3) during 2015−2020, China government restored 25% of national mangrove forests. To Sep. 2020, the area of mangrove nature reserves accounted for 16% of mangrove growth zone, and 77% of China's mangrove forests grew inside these nature reserves. A batch of relevant laws and regulations has been formulated to prohibit mangrove forests destruction. The protection and restoration of mangrove forests in China have already met Targets 6.6, 14.2, 14.5, and 15.2. However, since illegal logging is strictly prohibited and the awareness of protecting mangrove ecosystem has been increased continuously, losses of mangrove forests in some areas were mainly caused by natural disasters, such as extremely low temperature, hurricane, biological invasions, and insect outbreaks. For example, according to the Guangxi Mangrove Research Center, in March 2008 numbers of Avicennia plants along the coasts of Guangxi were killed by extremely low temperature, and in Guangxi Shankou Mangrove Nature Reserve, more than 167 ha of Spartina alterniflora (an invasive species) were discovered in 2005. The classification method and datasets of this study can support the evaluation of SDG 6.6 implementation, and provide important information for SDGs 13, 14, and 15 evaluation. In addition, the results of this study can serve as an important scientific basis and fundamental data for formulating China's mangrove protection and restoration strategies.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
yyj完成签到,获得积分10
1秒前
1秒前
max发布了新的文献求助10
1秒前
2秒前
砂糖完成签到,获得积分20
2秒前
斯文败类应助HCT采纳,获得10
2秒前
志小天发布了新的文献求助10
2秒前
2秒前
充电宝应助Utopia采纳,获得30
2秒前
Lucas应助黄油小花饼干采纳,获得30
3秒前
leslie发布了新的文献求助10
4秒前
Sun_Y完成签到,获得积分10
4秒前
NexusExplorer应助辛勤的映波采纳,获得10
4秒前
4秒前
BowieHuang应助LEEGAN采纳,获得10
4秒前
Lucas应助LEEGAN采纳,获得10
4秒前
砂糖发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
乖不如野发布了新的文献求助10
6秒前
伶俐碧萱完成签到 ,获得积分10
7秒前
青木瓜子完成签到 ,获得积分20
7秒前
7秒前
tree发布了新的文献求助10
8秒前
jiebai发布了新的文献求助10
8秒前
8秒前
hqy完成签到,获得积分10
8秒前
cocopan发布了新的文献求助10
9秒前
blenda发布了新的文献求助20
10秒前
万物可爱完成签到 ,获得积分10
11秒前
爆米花应助LHW采纳,获得10
11秒前
11秒前
嘻嘻哈哈完成签到 ,获得积分10
11秒前
不弱小妖完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809