Spatial-temporal changes of China’s mangrove forests over the past 50 years: An analysis towards the Sustainable Development Goals (SDGs)

红树林 地理 可持续发展 农林复合经营 中国 环境资源管理 环境保护 生态学 环境科学 生物 考古
作者
Mingming Jia,Zongming Wang,Dehua Mao,Chunlin Huang,Chunyan Lu
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:66 (30): 3886-3901 被引量:52
标识
DOI:10.1360/tb-2020-1412
摘要

Mangrove forests are tropical trees and shrubs that grow in sheltered coastlines, mudflats, and river banks in many parts of the world. These forests are rated amidst the most productive natural ecosystems on the earth, and are ecologically and socioeconomically important because of their crucial roles in coastal ecosystem protection. However, these forests are declining at an alarming rate, which is possibly more rapid than that of inland tropical forests. This serious loss has prompted a worldwide movement to protect and promote the sustainable use of mangrove forests. Recently, many governments adopted the United Nations’ Sustainable Development Goals (SDGs). The SDGs present an opportunity for nations to set realistic targets for achieving sustainable use of natural resources and environmental capital. Relevant to mangrove conservation, a range of targets were established for implementation by the year 2020, including Targets 6.6, 14.2, 14.5, and 15.2. To date, mangrove forests have been protected and restored for decades in China. However, little is known about achievements of China’s SDGs implementation on mangrove forests. The issue highlighted the need for a long-term holistic view of China’s mangrove forests dynamics. Although there have been multiple national datasets of China’s mangrove forests, few studies focused specifically on mangrove forests and their surrounding land covers. Thus, the objectives of this study are: (1) to apply a systematic remote sensing method across the entire coast of China, and build a new dataset of long-term China’s mangrove forests and surrounding land covers in 1973, 1980, 1990, 2000, 2010, 2015 (the first year of SDGs), and 2020 (the complete year of mangrove related SDGs); (2) to quantify the spatial-temporal changes of mangrove forests and conversion between mangrove forests and other coastal land covers; and (3) to discuss the achievements of China’s SDGs implementation on mangrove forests. In this study, we applied a hybrid object-based and hierarchical classification method to Landsat series imagery and achieved a high accuracy dataset of China’s mangrove forests and surrounding land covers. Results showed that: (1) on national scale, area of mangrove forests declined from 48801 to 18602 ha between 1973 and 2000, then partially recovered to 28010 ha in 2020; (2) the lost mangrove forests were mainly changed to croplands and aquaculture ponds, while the restored mangrove forests were mainly converted from tidal flats; and (3) during 2015−2020, China government restored 25% of national mangrove forests. To Sep. 2020, the area of mangrove nature reserves accounted for 16% of mangrove growth zone, and 77% of China’s mangrove forests grew inside these nature reserves. A batch of relevant laws and regulations has been formulated to prohibit mangrove forests destruction. The protection and restoration of mangrove forests in China have already met Targets 6.6, 14.2, 14.5, and 15.2. However, since illegal logging is strictly prohibited and the awareness of protecting mangrove ecosystem has been increased continuously, losses of mangrove forests in some areas were mainly caused by natural disasters, such as extremely low temperature, hurricane, biological invasions, and insect outbreaks. For example, according to the Guangxi Mangrove Research Center, in March 2008 numbers of Avicennia plants along the coasts of Guangxi were killed by extremely low temperature, and in Guangxi Shankou Mangrove Nature Reserve, more than 167 ha of Spartina alterniflora (an invasive species) were discovered in 2005. The classification method and datasets of this study can support the evaluation of SDG 6.6 implementation, and provide important information for SDGs 13, 14, and 15 evaluation. In addition, the results of this study can serve as an important scientific basis and fundamental data for formulating China’s mangrove protection and restoration strategies.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助踏实的从寒采纳,获得10
刚刚
GQ完成签到,获得积分10
刚刚
安若完成签到 ,获得积分20
1秒前
1秒前
1秒前
xiaoyu完成签到,获得积分10
2秒前
4秒前
无花果应助白日幻想家采纳,获得10
5秒前
阳佟天川完成签到,获得积分10
5秒前
科目三应助able采纳,获得10
5秒前
6秒前
烟花应助曲夜白采纳,获得10
7秒前
8秒前
北雁发布了新的文献求助10
9秒前
10秒前
11秒前
褚人达完成签到,获得积分10
11秒前
科研通AI2S应助研友_LMBAXn采纳,获得10
12秒前
13秒前
14秒前
酷炫迎波发布了新的文献求助30
15秒前
17秒前
的的完成签到,获得积分10
17秒前
……发布了新的文献求助10
17秒前
Jinyi完成签到,获得积分10
17秒前
18秒前
19秒前
ayayaya完成签到 ,获得积分10
20秒前
20秒前
20秒前
22秒前
Su发布了新的文献求助10
22秒前
lzz完成签到,获得积分10
23秒前
24秒前
24秒前
曲夜白发布了新的文献求助10
25秒前
科研一霸发布了新的文献求助10
26秒前
ZML发布了新的文献求助30
26秒前
yyz应助北雁采纳,获得10
27秒前
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053