遥操作
运动规划
操作员(生物学)
计算机科学
工作量
路径(计算)
遥控机器人学
实时计算
弹道
模拟
避碰
分布式计算
人机交互
碰撞
控制(管理)
机器人
移动机器人
人工智能
计算机网络
计算机安全
物理
转录因子
抑制因子
生物化学
化学
操作系统
基因
天文
作者
Dmitrij Schitz,Shuai Bao,Dominik Rieth,Harald Aschemann
出处
期刊:International Conference on Robotics and Automation
日期:2021-05-30
被引量:11
标识
DOI:10.1109/icra48506.2021.9561918
摘要
Teleoperation deals with extraordinary situations where an external operator takes over the control of an autonomous vehicle. Especially in complex urban scenarios, this may cause a too high workload for the human operator, resulting in suboptimal solutions. This contribution presents a teleoperation paradigm to raise the autonomy level of teleoperated driving, while the operator still remains the main decision-maker in all driving tasks. The introduced approach generates collision-free paths using LiDAR sensor information and suggests them to the operator. Therefore, a new hybrid path planning method has been developed, which searches and clusters in the first phase all feasible paths in the environment using a modified Rapidly-Exploring-Random Tree (RRT). In the second phase, the path selected by the operator is optimized online by a modified CHOMP algorithm. Real driving experiments confirm the effectiveness of the approach and highlight both the achieved driving safety and real time capability.
科研通智能强力驱动
Strongly Powered by AbleSci AI