石墨烯
石英晶体微天平
化学
刀豆蛋白A
生物分子
生物传感器
吸附
单层
分子
蛋白质吸附
纳米技术
生物物理学
有机化学
生物化学
材料科学
体外
生物
作者
Thomas Alava,Jason A. Mann,Cécile Théodore,Jaime J. Benítez,William R. Dichtel,J. M. Parpia,Harold G. Craighead
摘要
Graphene's suite of useful properties makes it of interest for use in biosensors. However, graphene interacts strongly with hydrophobic components of biomolecules, potentially altering their conformation and disrupting their biological activity. We have immobilized the protein Concanavalin A onto a self-assembled monolayer of multivalent tripodal molecules on single-layer graphene. We used a quartz crystal microbalance (QCM) to show that tripod-bound Concanavalin A retains its affinity for polysaccharides containing α-d-glucopyrannosyl groups as well as for the α-d-mannopyranosyl groups located on the cell wall of Bacillus subtilis. QCM measurements on unfunctionalized graphene indicate that adsorption of Concanavalin A onto graphene is accompanied by near-complete loss of these functions, suggesting that interactions with the graphene surface induce deleterious structural changes to the protein. Given that Concanavalin A's tertiary structure is thought to be relatively robust, these results suggest that other proteins might also be denatured upon adsorption onto graphene, such that the graphene–biomolecule interface must be considered carefully. Multivalent tripodal binding groups address this challenge by anchoring proteins without loss of function and without disrupting graphene's desirable electronic structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI