EMG-based estimation of shoulder and elbow joint angles for intuitive myoelectric control

肘部 接头(建筑物) 计算机科学 肩关节 物理医学与康复 肌电图 控制(管理) 人工智能 工程类 医学 解剖 结构工程
作者
Qin Zhang,Chengfei Zheng,Xiong Chen
标识
DOI:10.1109/cyber.2015.7288239
摘要

Surface Electromyography (EMG) has been considered as one of the modalities of human-machine interface (HMI) in the context of human-centered robotics. In order to interpret human muscle activities into motion intents, pattern classification-based EMG decoding methods and continuous joint kinematics methods were both proposed for advanced motion control. The former mainly provided binary command to activate a single DoF or a predefined motion pattern at one time, while the latter mainly estimated the joint kinematics of individual motion. In this work, we proposed to take advantage of these two technologies to achieve intuitive joint angle estimation for multiple arm motions concurrently. That is, the result of motion classification was applied to select correct joint angle estimation artificial neural network (ANN) which was trained for each motion in advance. Principal component analysis (PCA) processing presented its contribution to the improvement of the motion classification accuracy. The motion classification accuracy is around 92% across four subjects with least-square support vector machine (LS-SVM). The joint angle estimation represents around 80% accuracy of four arm motions across four subjects. This result indicates that the proposed method with the combination of the pattern classification and concurrent joint angle estimation is viable and promising to be applied for intuitive myoelectric control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助土豆土豆采纳,获得10
刚刚
niNe3YUE应助研友_Ljqal8采纳,获得10
1秒前
长情的海亦完成签到,获得积分10
3秒前
12发布了新的文献求助100
4秒前
5秒前
shiori完成签到,获得积分10
5秒前
隐形曼青应助Jodie采纳,获得10
7秒前
9秒前
郭6666发布了新的文献求助10
11秒前
FLyu完成签到,获得积分10
11秒前
耶椰发布了新的文献求助10
13秒前
12完成签到,获得积分10
13秒前
欣喜的元绿完成签到,获得积分10
18秒前
18秒前
20秒前
22秒前
26秒前
26秒前
huangqian发布了新的文献求助30
26秒前
郭6666完成签到,获得积分10
27秒前
可爱的函函应助lynn采纳,获得10
27秒前
28秒前
草莓能宝宝完成签到 ,获得积分10
29秒前
点凌蝶完成签到,获得积分10
31秒前
丘比特应助朴素的松采纳,获得10
33秒前
inter发布了新的文献求助10
33秒前
39秒前
39秒前
星辰大海应助Wqian采纳,获得10
42秒前
42秒前
46秒前
54秒前
55秒前
科目三应助朴素的松采纳,获得10
56秒前
Jodie发布了新的文献求助10
59秒前
59秒前
Heinrich完成签到,获得积分10
1分钟前
Lucas应助inter采纳,获得10
1分钟前
无极微光应助科研通管家采纳,获得20
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550