EMG-based estimation of shoulder and elbow joint angles for intuitive myoelectric control

肘部 接头(建筑物) 计算机科学 肩关节 物理医学与康复 肌电图 控制(管理) 人工智能 工程类 医学 解剖 结构工程
作者
Qin Zhang,Chengfei Zheng,Xiong Chen
标识
DOI:10.1109/cyber.2015.7288239
摘要

Surface Electromyography (EMG) has been considered as one of the modalities of human-machine interface (HMI) in the context of human-centered robotics. In order to interpret human muscle activities into motion intents, pattern classification-based EMG decoding methods and continuous joint kinematics methods were both proposed for advanced motion control. The former mainly provided binary command to activate a single DoF or a predefined motion pattern at one time, while the latter mainly estimated the joint kinematics of individual motion. In this work, we proposed to take advantage of these two technologies to achieve intuitive joint angle estimation for multiple arm motions concurrently. That is, the result of motion classification was applied to select correct joint angle estimation artificial neural network (ANN) which was trained for each motion in advance. Principal component analysis (PCA) processing presented its contribution to the improvement of the motion classification accuracy. The motion classification accuracy is around 92% across four subjects with least-square support vector machine (LS-SVM). The joint angle estimation represents around 80% accuracy of four arm motions across four subjects. This result indicates that the proposed method with the combination of the pattern classification and concurrent joint angle estimation is viable and promising to be applied for intuitive myoelectric control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白柏233完成签到,获得积分10
1秒前
俊逸的香萱完成签到 ,获得积分10
1秒前
yueyue完成签到,获得积分10
3秒前
方方完成签到 ,获得积分10
3秒前
3秒前
leaolf应助科研通管家采纳,获得10
4秒前
leaolf应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
5秒前
LJJ完成签到 ,获得积分10
6秒前
6秒前
6秒前
Assassion发布了新的文献求助30
9秒前
量子星尘发布了新的文献求助10
9秒前
蔡从安完成签到,获得积分20
11秒前
Joany发布了新的文献求助10
12秒前
小机灵鬼完成签到 ,获得积分10
14秒前
苗条而大河完成签到,获得积分10
14秒前
16秒前
ding应助沉静涵山采纳,获得10
16秒前
18秒前
严究生发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
23秒前
花花猪1989完成签到 ,获得积分10
26秒前
LHE发布了新的文献求助10
26秒前
livinglast完成签到 ,获得积分10
28秒前
Joany完成签到,获得积分10
29秒前
苗条的立果完成签到 ,获得积分10
30秒前
mmm4完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
37秒前
37秒前
研友_n0kjPL完成签到,获得积分0
37秒前
昔昔完成签到 ,获得积分10
39秒前
40秒前
沉静涵山发布了新的文献求助10
40秒前
认真丹亦完成签到 ,获得积分10
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597489
求助须知:如何正确求助?哪些是违规求助? 4009045
关于积分的说明 12409850
捐赠科研通 3688315
什么是DOI,文献DOI怎么找? 2033094
邀请新用户注册赠送积分活动 1066346
科研通“疑难数据库(出版商)”最低求助积分说明 951586