EMG-based estimation of shoulder and elbow joint angles for intuitive myoelectric control

肘部 接头(建筑物) 计算机科学 肩关节 物理医学与康复 肌电图 控制(管理) 人工智能 工程类 医学 解剖 结构工程
作者
Qin Zhang,Chengfei Zheng,Xiong Chen
标识
DOI:10.1109/cyber.2015.7288239
摘要

Surface Electromyography (EMG) has been considered as one of the modalities of human-machine interface (HMI) in the context of human-centered robotics. In order to interpret human muscle activities into motion intents, pattern classification-based EMG decoding methods and continuous joint kinematics methods were both proposed for advanced motion control. The former mainly provided binary command to activate a single DoF or a predefined motion pattern at one time, while the latter mainly estimated the joint kinematics of individual motion. In this work, we proposed to take advantage of these two technologies to achieve intuitive joint angle estimation for multiple arm motions concurrently. That is, the result of motion classification was applied to select correct joint angle estimation artificial neural network (ANN) which was trained for each motion in advance. Principal component analysis (PCA) processing presented its contribution to the improvement of the motion classification accuracy. The motion classification accuracy is around 92% across four subjects with least-square support vector machine (LS-SVM). The joint angle estimation represents around 80% accuracy of four arm motions across four subjects. This result indicates that the proposed method with the combination of the pattern classification and concurrent joint angle estimation is viable and promising to be applied for intuitive myoelectric control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jackie发布了新的文献求助10
刚刚
1秒前
cwy关注了科研通微信公众号
1秒前
乖乖猫完成签到,获得积分10
1秒前
1秒前
搜集达人应助得闲采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
沉静的梦秋完成签到,获得积分10
3秒前
3秒前
一寒发布了新的文献求助10
3秒前
IVY发布了新的文献求助50
4秒前
无敌发布了新的文献求助10
4秒前
虚幻豌豆发布了新的文献求助10
4秒前
4秒前
wang完成签到,获得积分10
4秒前
5秒前
5秒前
SICHEN完成签到,获得积分10
5秒前
小菜一碟发布了新的文献求助10
6秒前
森夏完成签到,获得积分10
6秒前
6秒前
6秒前
Angie_qian发布了新的文献求助10
6秒前
李爱国应助倩倩采纳,获得10
6秒前
意未清发布了新的文献求助10
6秒前
李白完成签到,获得积分10
6秒前
7秒前
专注的问寒应助zhan采纳,获得20
7秒前
在水一方应助烫个麻辣烫采纳,获得10
7秒前
Spike发布了新的文献求助10
7秒前
kk发布了新的文献求助10
8秒前
chen发布了新的文献求助10
8秒前
茹茹发布了新的文献求助10
8秒前
xh96完成签到,获得积分10
8秒前
微笑雁风完成签到,获得积分20
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667969
求助须知:如何正确求助?哪些是违规求助? 4888527
关于积分的说明 15122487
捐赠科研通 4826782
什么是DOI,文献DOI怎么找? 2584295
邀请新用户注册赠送积分活动 1538188
关于科研通互助平台的介绍 1496482