SDSC-UNet: Dual Skip Connection ViT-Based U-Shaped Model for Building Extraction

计算机科学 编码器 块(置换群论) 变压器 分割 人工智能 模式识别(心理学) 计算机视觉 数学 物理 几何学 量子力学 电压 操作系统
作者
Renhe Zhang,Qian Zhang,Guixu Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:15
标识
DOI:10.1109/lgrs.2023.3270303
摘要

Benefiting from effective global information interaction, vision-transformers (ViTs) have been widely used in the building extraction task. However, buildings in remote sensing (RS) images usually differ greatly in size. Mainstream ViT-based segmentation models for RS images are based on Swin Transformer, which lacks multi-scale information inside the ViT block. In addition, they only connect the output of the entire ViT encoder block to the decoder, which ignore the similarity information of the attention maps inside the ViT encoder block, and are unable to provide better global dependencies for the decoder. To solve above problems, we introduce a novel Shunted Transformer, which enables the model to capture multi-scale information internally while fully establishing global dependencies, to build a pure ViT-based U-shaped model for building extraction. Furthermore, unlike the previous single-skip-connection structure of U-shaped methods, we build a novel dual skip connection structure inside the model. It simultaneously transmits the attention maps inside the ViT encoder block and its entire output to the decoder, thereby fully mining the information of the ViT encoder block and providing better global information guidance for the decoder. Thus, our model is named Shunted Dual Skip Connection UNet (SDSC-UNet). We also design a feature fusion module called Dual Skip Upsample Fusion Module (DSUFM) to aggregate the information. Our model has yields state-of-the-art (SOTA) performance (83.02%IoU) on the Inria Aerial Image Labeling Dataset. Code will be available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
哈哈哈哈完成签到,获得积分10
2秒前
沧海泪发布了新的文献求助10
3秒前
小胡先森应助凤凰山采纳,获得10
3秒前
一一完成签到,获得积分10
3秒前
惠惠发布了新的文献求助10
3秒前
shotgod完成签到,获得积分20
4秒前
科研通AI5应助蕾子采纳,获得10
4秒前
happy杨完成签到 ,获得积分10
4秒前
lichaoyes发布了新的文献求助10
4秒前
4秒前
Owen应助通~采纳,获得10
4秒前
封闭货车发布了新的文献求助10
5秒前
5秒前
www发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
shotgod发布了新的文献求助10
7秒前
ling玲完成签到,获得积分10
7秒前
奔奔发布了新的文献求助10
7秒前
SweepingMonk应助虚心盼晴采纳,获得10
8秒前
9秒前
汉堡包应助XXF采纳,获得10
9秒前
wzh完成签到,获得积分10
9秒前
海底落日完成签到,获得积分20
9秒前
10秒前
科研通AI5应助123采纳,获得30
10秒前
烟花应助pi采纳,获得10
11秒前
汉堡包应助小木木壮采纳,获得10
11秒前
11秒前
yl发布了新的文献求助30
11秒前
菲菲呀发布了新的文献求助10
11秒前
11秒前
科研通AI5应助禾泽采纳,获得30
12秒前
坚强的樱发布了新的文献求助10
12秒前
英俊梦槐完成签到,获得积分10
12秒前
123发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794