SDSC-UNet: Dual Skip Connection ViT-Based U-Shaped Model for Building Extraction

计算机科学 编码器 块(置换群论) 变压器 分割 人工智能 模式识别(心理学) 计算机视觉 数学 物理 几何学 量子力学 电压 操作系统
作者
Renhe Zhang,Qian Zhang,Guixu Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:24
标识
DOI:10.1109/lgrs.2023.3270303
摘要

Benefiting from effective global information interaction, vision-transformers (ViTs) have been widely used in the building extraction task. However, buildings in remote sensing (RS) images usually differ greatly in size. Mainstream ViT-based segmentation models for RS images are based on Swin Transformer, which lacks multi-scale information inside the ViT block. In addition, they only connect the output of the entire ViT encoder block to the decoder, which ignore the similarity information of the attention maps inside the ViT encoder block, and are unable to provide better global dependencies for the decoder. To solve above problems, we introduce a novel Shunted Transformer, which enables the model to capture multi-scale information internally while fully establishing global dependencies, to build a pure ViT-based U-shaped model for building extraction. Furthermore, unlike the previous single-skip-connection structure of U-shaped methods, we build a novel dual skip connection structure inside the model. It simultaneously transmits the attention maps inside the ViT encoder block and its entire output to the decoder, thereby fully mining the information of the ViT encoder block and providing better global information guidance for the decoder. Thus, our model is named Shunted Dual Skip Connection UNet (SDSC-UNet). We also design a feature fusion module called Dual Skip Upsample Fusion Module (DSUFM) to aggregate the information. Our model has yields state-of-the-art (SOTA) performance (83.02%IoU) on the Inria Aerial Image Labeling Dataset. Code will be available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超开心完成签到,获得积分10
刚刚
pancake发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
科研通AI6应助DH采纳,获得10
1秒前
华仔应助xx采纳,获得10
1秒前
泡泡儿发布了新的文献求助10
1秒前
1秒前
小乖发布了新的文献求助10
2秒前
水水发布了新的文献求助10
3秒前
SC武完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
赵拉弟发布了新的文献求助20
4秒前
哦啦啦发布了新的文献求助30
4秒前
6秒前
army77发布了新的文献求助10
6秒前
鑫xin发布了新的文献求助10
6秒前
6秒前
小晋发布了新的文献求助10
7秒前
7秒前
anan完成签到 ,获得积分10
7秒前
搜集达人应助犹豫的云朵采纳,获得10
8秒前
二一完成签到,获得积分10
8秒前
邹友亮完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
王聪发布了新的文献求助10
10秒前
11秒前
充电宝应助dan1029采纳,获得10
11秒前
11秒前
12秒前
丘比特应助小乖采纳,获得10
12秒前
ll发布了新的文献求助10
12秒前
14秒前
把妹王发布了新的文献求助10
14秒前
包子发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940