SDSC-UNet: Dual Skip Connection ViT-Based U-Shaped Model for Building Extraction

计算机科学 编码器 块(置换群论) 变压器 分割 人工智能 模式识别(心理学) 计算机视觉 数学 物理 几何学 量子力学 电压 操作系统
作者
Renhe Zhang,Qian Zhang,Guixu Zhang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:15
标识
DOI:10.1109/lgrs.2023.3270303
摘要

Benefiting from effective global information interaction, vision-transformers (ViTs) have been widely used in the building extraction task. However, buildings in remote sensing (RS) images usually differ greatly in size. Mainstream ViT-based segmentation models for RS images are based on Swin Transformer, which lacks multi-scale information inside the ViT block. In addition, they only connect the output of the entire ViT encoder block to the decoder, which ignore the similarity information of the attention maps inside the ViT encoder block, and are unable to provide better global dependencies for the decoder. To solve above problems, we introduce a novel Shunted Transformer, which enables the model to capture multi-scale information internally while fully establishing global dependencies, to build a pure ViT-based U-shaped model for building extraction. Furthermore, unlike the previous single-skip-connection structure of U-shaped methods, we build a novel dual skip connection structure inside the model. It simultaneously transmits the attention maps inside the ViT encoder block and its entire output to the decoder, thereby fully mining the information of the ViT encoder block and providing better global information guidance for the decoder. Thus, our model is named Shunted Dual Skip Connection UNet (SDSC-UNet). We also design a feature fusion module called Dual Skip Upsample Fusion Module (DSUFM) to aggregate the information. Our model has yields state-of-the-art (SOTA) performance (83.02%IoU) on the Inria Aerial Image Labeling Dataset. Code will be available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助在我梦里绕采纳,获得10
刚刚
Youatpome发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
马甲完成签到,获得积分10
2秒前
2秒前
peiter发布了新的文献求助10
2秒前
小黄发布了新的文献求助10
4秒前
f0rest发布了新的文献求助10
5秒前
5秒前
Ilan发布了新的文献求助10
6秒前
枫七完成签到,获得积分10
6秒前
dd发布了新的文献求助10
6秒前
pharma发布了新的文献求助10
8秒前
酷波er应助不要加糖采纳,获得10
9秒前
完美世界应助悦耳人生采纳,获得10
9秒前
11秒前
小羊完成签到,获得积分10
11秒前
赘婿应助研友_Z1WrgL采纳,获得10
11秒前
17完成签到,获得积分10
12秒前
wangzh发布了新的文献求助10
12秒前
所所应助机灵水卉采纳,获得10
12秒前
所所应助zou采纳,获得10
12秒前
慕青应助linmo采纳,获得10
14秒前
快乐秋白完成签到,获得积分10
15秒前
CodeCraft应助YING采纳,获得10
16秒前
Jeffery完成签到,获得积分10
16秒前
17秒前
映城应助17采纳,获得30
17秒前
17秒前
Tianxu Li发布了新的文献求助10
17秒前
18秒前
18秒前
djbj2022发布了新的文献求助10
19秒前
zou发布了新的文献求助10
20秒前
英俊的铭应助鹏笑采纳,获得10
21秒前
佘楽发布了新的文献求助10
21秒前
21秒前
快乐秋白发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967699
求助须知:如何正确求助?哪些是违规求助? 3512860
关于积分的说明 11165281
捐赠科研通 3247897
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804550