亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Is the radiomics-clinical combined model helpful in distinguishing between pancreatic cancer and mass-forming pancreatitis?

医学 队列 无线电技术 胰腺癌 放射科 胰腺炎 内科学 癌症
作者
Weinuo Qu,Ziling Zhou,Guanjie Yuan,Shichao Li,Jiali Li,Qian Chu,Qingpeng Zhang,Qingguo Xie,Zhen Li,Ihab R. Kamel
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:164: 110857-110857
标识
DOI:10.1016/j.ejrad.2023.110857
摘要

To develop CT-based radiomics models for distinguishing between resectable PDAC and mass-forming pancreatitis (MFP) and to provide a non-invasive tool for cases of equivocal imaging findings with EUS-FNA needed.A total of 201 patients with resectable PDAC and 54 patients with MFP were included. Development cohort: patients without preoperative EUS-FNA (175 PDAC cases, 38 MFP cases); validation cohort: patients with EUS-FNA (26 PDAC cases, 16 MFP cases). Two radiomic signatures (LASSOscore, PCAscore) were developed based on the LASSO model and principal component analysis. LASSOCli and PCACli prediction models were established by combining clinical features with CT radiomic features. ROC analysis and decision curve analysis (DCA) were performed to evaluate the utility of the model versus EUS-FNA in the validation cohort.In the validation cohort, the radiomic signatures (LASSOscore, PCAscore) were both effective in distinguishing between resectable PDAC and MFP (AUCLASSO = 0.743, 95% CI: 0.590-0.896; AUCPCA = 0.788, 95% CI: 0.639-0.938) and improved the diagnostic accuracy of the baseline onlyCli model (AUConlyCli = 0.760, 95% CI: 0.614-0.960) after combination with variables including age, CA19-9, and the double-duct sign (AUCPCACli = 0.880, 95% CI: 0.776-0.983; AUCLASSOCli = 0.825, 95% CI: 0.694-0.955). The PCACli model showed comparable performance to FNA (AUCFNA = 0.810, 95% CI: 0.685-0.935). In DCA, the net benefit of the PCACli model was superior to that of EUS-FNA, avoiding biopsies in 70 per 1000 patients at a risk threshold of 35%.The PCACli model showed comparable performance with EUS-FNA in discriminating resectable PDAC from MFP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34举报霍霍求助涉嫌违规
9秒前
隐形曼青应助juan采纳,获得10
13秒前
25秒前
32秒前
32秒前
37秒前
多乐多发布了新的文献求助10
39秒前
OSASACB完成签到 ,获得积分10
40秒前
41秒前
英姑应助多乐多采纳,获得10
50秒前
52秒前
1分钟前
1分钟前
SUNny发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
juan发布了新的文献求助10
2分钟前
juan完成签到,获得积分10
2分钟前
美满的小蘑菇完成签到 ,获得积分10
2分钟前
可爱的函函应助Huck采纳,获得10
2分钟前
2分钟前
2分钟前
Huck发布了新的文献求助10
2分钟前
斯文渊思发布了新的文献求助10
2分钟前
2分钟前
遥感小虫发布了新的文献求助10
2分钟前
斯文渊思完成签到,获得积分10
3分钟前
遥感小虫发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
顾矜应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664501
求助须知:如何正确求助?哪些是违规求助? 4863056
关于积分的说明 15107857
捐赠科研通 4823130
什么是DOI,文献DOI怎么找? 2581958
邀请新用户注册赠送积分活动 1536065
关于科研通互助平台的介绍 1494491