重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Is the radiomics-clinical combined model helpful in distinguishing between pancreatic cancer and mass-forming pancreatitis?

医学 队列 无线电技术 胰腺癌 放射科 胰腺炎 内科学 癌症
作者
Weinuo Qu,Ziling Zhou,Guanjie Yuan,Shichao Li,Jiali Li,Qian Chu,Qingpeng Zhang,Qingguo Xie,Zhen Li,Ihab R. Kamel
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:164: 110857-110857
标识
DOI:10.1016/j.ejrad.2023.110857
摘要

To develop CT-based radiomics models for distinguishing between resectable PDAC and mass-forming pancreatitis (MFP) and to provide a non-invasive tool for cases of equivocal imaging findings with EUS-FNA needed.A total of 201 patients with resectable PDAC and 54 patients with MFP were included. Development cohort: patients without preoperative EUS-FNA (175 PDAC cases, 38 MFP cases); validation cohort: patients with EUS-FNA (26 PDAC cases, 16 MFP cases). Two radiomic signatures (LASSOscore, PCAscore) were developed based on the LASSO model and principal component analysis. LASSOCli and PCACli prediction models were established by combining clinical features with CT radiomic features. ROC analysis and decision curve analysis (DCA) were performed to evaluate the utility of the model versus EUS-FNA in the validation cohort.In the validation cohort, the radiomic signatures (LASSOscore, PCAscore) were both effective in distinguishing between resectable PDAC and MFP (AUCLASSO = 0.743, 95% CI: 0.590-0.896; AUCPCA = 0.788, 95% CI: 0.639-0.938) and improved the diagnostic accuracy of the baseline onlyCli model (AUConlyCli = 0.760, 95% CI: 0.614-0.960) after combination with variables including age, CA19-9, and the double-duct sign (AUCPCACli = 0.880, 95% CI: 0.776-0.983; AUCLASSOCli = 0.825, 95% CI: 0.694-0.955). The PCACli model showed comparable performance to FNA (AUCFNA = 0.810, 95% CI: 0.685-0.935). In DCA, the net benefit of the PCACli model was superior to that of EUS-FNA, avoiding biopsies in 70 per 1000 patients at a risk threshold of 35%.The PCACli model showed comparable performance with EUS-FNA in discriminating resectable PDAC from MFP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极大门完成签到,获得积分10
1秒前
1秒前
小脚丫完成签到,获得积分10
1秒前
在水一方应助坦率灵槐采纳,获得10
1秒前
2秒前
Ray发布了新的文献求助10
2秒前
2秒前
有益发布了新的文献求助10
3秒前
3秒前
GQL完成签到,获得积分10
3秒前
3秒前
张风琴发布了新的文献求助10
3秒前
在水一方应助喜之郎采纳,获得10
4秒前
向日葵完成签到,获得积分10
4秒前
baoleijia发布了新的文献求助10
4秒前
4秒前
小鱼鱼发布了新的文献求助10
5秒前
幽默尔蓝发布了新的文献求助10
5秒前
5秒前
玛璃鸶完成签到,获得积分10
6秒前
共享精神应助GQL采纳,获得10
6秒前
分析发布了新的文献求助20
6秒前
6秒前
兴奋巧凡完成签到 ,获得积分10
6秒前
7秒前
pjjpk01完成签到,获得积分10
7秒前
酷波er应助积极大门采纳,获得10
7秒前
Zhixiang发布了新的文献求助10
7秒前
淡定的半鬼完成签到,获得积分10
7秒前
7秒前
7秒前
阿海的发布了新的文献求助10
8秒前
吴彦祖应助科研通管家采纳,获得15
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
koi发布了新的文献求助10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
Ox1dant完成签到,获得积分10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466380
求助须知:如何正确求助?哪些是违规求助? 4570254
关于积分的说明 14324125
捐赠科研通 4496749
什么是DOI,文献DOI怎么找? 2463571
邀请新用户注册赠送积分活动 1452461
关于科研通互助平台的介绍 1427543