Is the radiomics-clinical combined model helpful in distinguishing between pancreatic cancer and mass-forming pancreatitis?

医学 队列 无线电技术 胰腺癌 放射科 胰腺炎 内科学 癌症
作者
Weinuo Qu,Ziling Zhou,Guanjie Yuan,Shichao Li,Jiali Li,Qian Chu,Qingpeng Zhang,Qingguo Xie,Zhen Li,Ihab R. Kamel
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:164: 110857-110857
标识
DOI:10.1016/j.ejrad.2023.110857
摘要

To develop CT-based radiomics models for distinguishing between resectable PDAC and mass-forming pancreatitis (MFP) and to provide a non-invasive tool for cases of equivocal imaging findings with EUS-FNA needed.A total of 201 patients with resectable PDAC and 54 patients with MFP were included. Development cohort: patients without preoperative EUS-FNA (175 PDAC cases, 38 MFP cases); validation cohort: patients with EUS-FNA (26 PDAC cases, 16 MFP cases). Two radiomic signatures (LASSOscore, PCAscore) were developed based on the LASSO model and principal component analysis. LASSOCli and PCACli prediction models were established by combining clinical features with CT radiomic features. ROC analysis and decision curve analysis (DCA) were performed to evaluate the utility of the model versus EUS-FNA in the validation cohort.In the validation cohort, the radiomic signatures (LASSOscore, PCAscore) were both effective in distinguishing between resectable PDAC and MFP (AUCLASSO = 0.743, 95% CI: 0.590-0.896; AUCPCA = 0.788, 95% CI: 0.639-0.938) and improved the diagnostic accuracy of the baseline onlyCli model (AUConlyCli = 0.760, 95% CI: 0.614-0.960) after combination with variables including age, CA19-9, and the double-duct sign (AUCPCACli = 0.880, 95% CI: 0.776-0.983; AUCLASSOCli = 0.825, 95% CI: 0.694-0.955). The PCACli model showed comparable performance to FNA (AUCFNA = 0.810, 95% CI: 0.685-0.935). In DCA, the net benefit of the PCACli model was superior to that of EUS-FNA, avoiding biopsies in 70 per 1000 patients at a risk threshold of 35%.The PCACli model showed comparable performance with EUS-FNA in discriminating resectable PDAC from MFP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智芝发布了新的文献求助10
4秒前
Liu发布了新的文献求助10
5秒前
深情安青应助蓝天采纳,获得10
6秒前
大模型应助彪壮的吐司采纳,获得10
6秒前
8秒前
vousme完成签到 ,获得积分10
9秒前
9秒前
张帆发布了新的文献求助10
10秒前
等乙天发布了新的文献求助10
13秒前
F-超哥完成签到,获得积分10
14秒前
14秒前
我是老大应助lili采纳,获得10
17秒前
linhappy完成签到 ,获得积分10
17秒前
17秒前
骨科小李完成签到,获得积分10
17秒前
painting应助柚子苏采纳,获得10
17秒前
琪琪完成签到,获得积分10
18秒前
外向的易蓉完成签到 ,获得积分10
18秒前
科研通AI6应助蜗牛采纳,获得10
18秒前
21秒前
憯懔完成签到,获得积分10
21秒前
AspenW完成签到,获得积分10
22秒前
22秒前
xchi发布了新的文献求助10
25秒前
25秒前
26秒前
orixero应助可爱的胖嘟嘟采纳,获得10
26秒前
慕青应助闭眼听风雨采纳,获得10
26秒前
啵啵鱼发布了新的文献求助10
27秒前
27秒前
27秒前
蓝天发布了新的文献求助10
28秒前
zhonglv7应助科研通管家采纳,获得10
31秒前
littleknees应助科研通管家采纳,获得10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
桐桐应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
niNe3YUE应助科研通管家采纳,获得10
31秒前
Ava应助科研通管家采纳,获得10
31秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563431
求助须知:如何正确求助?哪些是违规求助? 4648294
关于积分的说明 14684348
捐赠科研通 4590281
什么是DOI,文献DOI怎么找? 2518423
邀请新用户注册赠送积分活动 1491102
关于科研通互助平台的介绍 1462386