BViT: Broad Attention-Based Vision Transformer

计算机科学 变压器 人工智能 机器学习 模式识别(心理学) 计算机工程 工程类 电气工程 电压
作者
Nannan Li,Yaran Chen,Weifan Li,Zixiang Ding,Dongbin Zhao,Shuai Nie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (9): 12772-12783 被引量:26
标识
DOI:10.1109/tnnls.2023.3264730
摘要

Recent works have demonstrated that transformer can achieve promising performance in computer vision, by exploiting the relationship among image patches with self-attention. They only consider the attention in a single feature layer, but ignore the complementarity of attention in different layers. In this article, we propose broad attention to improve the performance by incorporating the attention relationship of different layers for vision transformer (ViT), which is called BViT. The broad attention is implemented by broad connection and parameter-free attention. Broad connection of each transformer layer promotes the transmission and integration of information for BViT. Without introducing additional trainable parameters, parameter-free attention jointly focuses on the already available attention information in different layers for extracting useful information and building their relationship. Experiments on image classification tasks demonstrate that BViT delivers superior accuracy of 75.0%/81.6% top-1 accuracy on ImageNet with 5M/22M parameters. Moreover, we transfer BViT to downstream object recognition benchmarks to achieve 98.9% and 89.9% on CIFAR10 and CIFAR100, respectively, that exceed ViT with fewer parameters. For the generalization test, the broad attention in Swin Transformer, T2T-ViT and LVT also brings an improvement of more than 1%. To sum up, broad attention is promising to promote the performance of attention-based models. Code and pretrained models are available at https://github.com/DRL/BViT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sunyuice发布了新的文献求助10
1秒前
亦雪发布了新的文献求助10
1秒前
欢呼山雁完成签到,获得积分10
1秒前
1秒前
青春梦完成签到,获得积分10
1秒前
wrf77_完成签到,获得积分10
2秒前
BowieHuang应助任性的小丸子采纳,获得10
2秒前
3秒前
米饭多加水完成签到 ,获得积分10
3秒前
勤劳的水之完成签到,获得积分10
3秒前
3秒前
小马甲应助Yuan88采纳,获得10
3秒前
西西弗斯完成签到,获得积分0
4秒前
倒霉蛋完成签到,获得积分20
4秒前
宋佳珍发布了新的文献求助10
4秒前
4秒前
传奇3应助Nano采纳,获得10
5秒前
SppikeFPS完成签到,获得积分10
5秒前
打打应助45采纳,获得10
5秒前
5秒前
5秒前
6秒前
科研通AI6应助阿龙采纳,获得10
7秒前
7秒前
迷路的以蓝完成签到,获得积分20
7秒前
傲娇诗完成签到,获得积分10
7秒前
心灵美盼烟完成签到,获得积分10
7秒前
晚来风与雪完成签到 ,获得积分10
8秒前
科研通AI6应助cuizhiyu采纳,获得30
8秒前
xxx发布了新的文献求助10
8秒前
xzh发布了新的文献求助10
8秒前
Li应助倒霉蛋采纳,获得30
9秒前
江子完成签到 ,获得积分10
9秒前
9秒前
9秒前
繁星背后发布了新的文献求助10
9秒前
Ava应助浪费采纳,获得10
10秒前
10秒前
努力发芽的小黄豆完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609