亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application

马氏距离 分类器(UML) 数据挖掘 工程类 故障检测与隔离 计算机科学 模式识别(心理学) 人工智能 预言 变压器 可靠性工程 执行机构 电气工程 电压
作者
Haiyue Wu,Matthew J. Triebe,John W. Sutherland
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:67: 439-452 被引量:57
标识
DOI:10.1016/j.jmsy.2023.02.018
摘要

Owing to the rapid development of Industry 4.0, new sensing and communication technologies have made vast amounts of untapped process data available. In order to transform such data assets into strong insights and knowledge that support manufacturing decisions, condition-based maintenance (CBM) and fault detection and diagnosis (FDD) have become effective ways to enhance equipment reliability and reduce costs. A successful data-driven FDD method must not only be capable of identifying the types of known faults, but also in detecting unseen or uncharacterized events during manufacturing system operation. To this end, this paper presents a Transformer-based classifier that can efficiently identify different known types and severity levels of fault conditions, in addition to novel fault detection. In this method, time-frequency spectrograms transformed from raw vibration signals are input to the classifier for known fault classification. Utilizing the advanced feature extracting performance of the classifier, a simple yet effective technique based on Mahalanobis distance is adopted to detect whether the fault comes from a previously unseen fault condition. When a novel condition is detected, the model is subsequently retrained using the novel data in an incremental learning manner. The proposed method is verified by an experimental case study with data collected from a testbed that has many features representative of common manufacturing equipment. The results demonstrated that the proposed method has superior performance in both fault diagnosis and novelty identification when compared with the baseline models and a cutting-edge model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AprilLeung完成签到 ,获得积分10
11秒前
44秒前
深情安青应助科研通管家采纳,获得10
51秒前
迷茫的一代完成签到,获得积分10
1分钟前
魔笛的云宝完成签到 ,获得积分10
1分钟前
www完成签到,获得积分10
2分钟前
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
Akitten发布了新的文献求助10
3分钟前
啥时候吃火锅完成签到 ,获得积分0
4分钟前
上官若男应助科研通管家采纳,获得30
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
赘婿应助科研通管家采纳,获得10
4分钟前
田様应助精明晓刚采纳,获得10
5分钟前
5分钟前
精明晓刚发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
coolplex完成签到 ,获得积分10
7分钟前
wwe完成签到,获得积分10
7分钟前
貔貅完成签到 ,获得积分10
8分钟前
yindi1991完成签到 ,获得积分10
10分钟前
hgl完成签到,获得积分10
10分钟前
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
10分钟前
华仔应助精明晓刚采纳,获得10
11分钟前
11分钟前
11分钟前
精明晓刚发布了新的文献求助10
11分钟前
糖伯虎完成签到 ,获得积分10
12分钟前
在水一方应助科研通管家采纳,获得10
12分钟前
光合作用完成签到,获得积分10
13分钟前
13分钟前
精明晓刚发布了新的文献求助10
13分钟前
精明晓刚完成签到,获得积分10
14分钟前
14分钟前
搜集达人应助kangkang采纳,获得10
14分钟前
英姑应助科研通管家采纳,获得10
14分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990351
求助须知:如何正确求助?哪些是违规求助? 3532158
关于积分的说明 11256513
捐赠科研通 3271046
什么是DOI,文献DOI怎么找? 1805207
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809234