A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application

马氏距离 分类器(UML) 数据挖掘 工程类 故障检测与隔离 计算机科学 模式识别(心理学) 人工智能 预言 变压器 可靠性工程 执行机构 电气工程 电压
作者
Haiyue Wu,Matthew J. Triebe,John W. Sutherland
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:67: 439-452 被引量:42
标识
DOI:10.1016/j.jmsy.2023.02.018
摘要

Owing to the rapid development of Industry 4.0, new sensing and communication technologies have made vast amounts of untapped process data available. In order to transform such data assets into strong insights and knowledge that support manufacturing decisions, condition-based maintenance (CBM) and fault detection and diagnosis (FDD) have become effective ways to enhance equipment reliability and reduce costs. A successful data-driven FDD method must not only be capable of identifying the types of known faults, but also in detecting unseen or uncharacterized events during manufacturing system operation. To this end, this paper presents a Transformer-based classifier that can efficiently identify different known types and severity levels of fault conditions, in addition to novel fault detection. In this method, time-frequency spectrograms transformed from raw vibration signals are input to the classifier for known fault classification. Utilizing the advanced feature extracting performance of the classifier, a simple yet effective technique based on Mahalanobis distance is adopted to detect whether the fault comes from a previously unseen fault condition. When a novel condition is detected, the model is subsequently retrained using the novel data in an incremental learning manner. The proposed method is verified by an experimental case study with data collected from a testbed that has many features representative of common manufacturing equipment. The results demonstrated that the proposed method has superior performance in both fault diagnosis and novelty identification when compared with the baseline models and a cutting-edge model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助胡萝卜icc采纳,获得10
刚刚
长安某完成签到 ,获得积分10
1秒前
xiaohong完成签到,获得积分10
2秒前
马蹄发布了新的文献求助10
3秒前
善良的西瓜完成签到 ,获得积分10
3秒前
3秒前
天天快乐应助塔娜采纳,获得10
4秒前
一个星完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
7秒前
Yimim完成签到 ,获得积分10
8秒前
9秒前
科研混子完成签到,获得积分20
9秒前
zsj97发布了新的文献求助10
9秒前
10秒前
科研通AI2S应助马蹄采纳,获得10
10秒前
Ann发布了新的文献求助10
11秒前
lirui完成签到,获得积分10
11秒前
xms2022发布了新的文献求助10
12秒前
13秒前
木子完成签到 ,获得积分10
14秒前
小跳蚤发布了新的文献求助10
14秒前
摆哥发布了新的文献求助10
15秒前
李健应助于暖暖采纳,获得10
15秒前
16秒前
胡萝卜icc发布了新的文献求助10
16秒前
17秒前
脑洞疼应助楼萌黑采纳,获得10
17秒前
小齐发布了新的文献求助10
18秒前
ding应助JIAO采纳,获得10
20秒前
来者发布了新的文献求助10
20秒前
20秒前
SciGPT应助xxp采纳,获得10
21秒前
q12发布了新的文献求助10
21秒前
tangtang发布了新的文献求助20
21秒前
晓南窗发布了新的文献求助10
21秒前
情怀应助长安某采纳,获得10
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248330
求助须知:如何正确求助?哪些是违规求助? 2891731
关于积分的说明 8268453
捐赠科研通 2559668
什么是DOI,文献DOI怎么找? 1388584
科研通“疑难数据库(出版商)”最低求助积分说明 650772
邀请新用户注册赠送积分活动 627744