A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application

马氏距离 分类器(UML) 数据挖掘 工程类 故障检测与隔离 计算机科学 模式识别(心理学) 人工智能 预言 变压器 可靠性工程 执行机构 电气工程 电压
作者
Haiyue Wu,Matthew J. Triebe,John W. Sutherland
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:67: 439-452 被引量:57
标识
DOI:10.1016/j.jmsy.2023.02.018
摘要

Owing to the rapid development of Industry 4.0, new sensing and communication technologies have made vast amounts of untapped process data available. In order to transform such data assets into strong insights and knowledge that support manufacturing decisions, condition-based maintenance (CBM) and fault detection and diagnosis (FDD) have become effective ways to enhance equipment reliability and reduce costs. A successful data-driven FDD method must not only be capable of identifying the types of known faults, but also in detecting unseen or uncharacterized events during manufacturing system operation. To this end, this paper presents a Transformer-based classifier that can efficiently identify different known types and severity levels of fault conditions, in addition to novel fault detection. In this method, time-frequency spectrograms transformed from raw vibration signals are input to the classifier for known fault classification. Utilizing the advanced feature extracting performance of the classifier, a simple yet effective technique based on Mahalanobis distance is adopted to detect whether the fault comes from a previously unseen fault condition. When a novel condition is detected, the model is subsequently retrained using the novel data in an incremental learning manner. The proposed method is verified by an experimental case study with data collected from a testbed that has many features representative of common manufacturing equipment. The results demonstrated that the proposed method has superior performance in both fault diagnosis and novelty identification when compared with the baseline models and a cutting-edge model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lc完成签到,获得积分10
1秒前
4秒前
李健的小迷弟应助anna采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
7秒前
嘀嘀咕咕发布了新的文献求助10
7秒前
大观天下完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
兴奋千兰发布了新的文献求助10
10秒前
有机发布了新的文献求助10
11秒前
yukang发布了新的文献求助10
11秒前
13秒前
大观天下发布了新的文献求助30
14秒前
14秒前
16秒前
17秒前
小盘子完成签到,获得积分10
17秒前
18秒前
今后应助务实的大神采纳,获得10
18秒前
anna发布了新的文献求助10
21秒前
21秒前
Elaine完成签到,获得积分10
21秒前
23秒前
nolan完成签到 ,获得积分10
23秒前
25秒前
彭于晏应助嘀嘀咕咕采纳,获得10
25秒前
搜集达人应助感动的山槐采纳,获得10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989069
求助须知:如何正确求助?哪些是违规求助? 3531351
关于积分的说明 11253589
捐赠科研通 3269939
什么是DOI,文献DOI怎么找? 1804851
邀请新用户注册赠送积分活动 882074
科研通“疑难数据库(出版商)”最低求助积分说明 809073