A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application

马氏距离 分类器(UML) 数据挖掘 工程类 故障检测与隔离 计算机科学 模式识别(心理学) 人工智能 预言 变压器 可靠性工程 执行机构 电气工程 电压
作者
Haiyue Wu,Matthew J. Triebe,John W. Sutherland
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:67: 439-452 被引量:57
标识
DOI:10.1016/j.jmsy.2023.02.018
摘要

Owing to the rapid development of Industry 4.0, new sensing and communication technologies have made vast amounts of untapped process data available. In order to transform such data assets into strong insights and knowledge that support manufacturing decisions, condition-based maintenance (CBM) and fault detection and diagnosis (FDD) have become effective ways to enhance equipment reliability and reduce costs. A successful data-driven FDD method must not only be capable of identifying the types of known faults, but also in detecting unseen or uncharacterized events during manufacturing system operation. To this end, this paper presents a Transformer-based classifier that can efficiently identify different known types and severity levels of fault conditions, in addition to novel fault detection. In this method, time-frequency spectrograms transformed from raw vibration signals are input to the classifier for known fault classification. Utilizing the advanced feature extracting performance of the classifier, a simple yet effective technique based on Mahalanobis distance is adopted to detect whether the fault comes from a previously unseen fault condition. When a novel condition is detected, the model is subsequently retrained using the novel data in an incremental learning manner. The proposed method is verified by an experimental case study with data collected from a testbed that has many features representative of common manufacturing equipment. The results demonstrated that the proposed method has superior performance in both fault diagnosis and novelty identification when compared with the baseline models and a cutting-edge model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
luozejun完成签到,获得积分10
1秒前
ycp完成签到,获得积分10
2秒前
dawang完成签到 ,获得积分10
2秒前
洁净的智宸完成签到 ,获得积分10
2秒前
zhaopeipei发布了新的文献求助10
2秒前
eternity136完成签到,获得积分10
2秒前
3秒前
SciGPT应助zz采纳,获得10
3秒前
科研欣路完成签到,获得积分10
4秒前
bulingbuling发布了新的文献求助10
5秒前
斯文败类应助Y123采纳,获得10
5秒前
eternity136发布了新的文献求助10
5秒前
6秒前
共享精神应助zzq778采纳,获得10
6秒前
6秒前
6秒前
小辉发布了新的文献求助10
8秒前
跳跃小伙完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
laber应助kento采纳,获得50
9秒前
Jackcaosky完成签到 ,获得积分10
9秒前
午夜咖啡香完成签到,获得积分20
9秒前
小二郎应助冷静采纳,获得10
10秒前
胡航航完成签到,获得积分10
10秒前
大吴克发布了新的文献求助10
12秒前
精明寒蕾完成签到,获得积分10
12秒前
A宇完成签到,获得积分10
13秒前
白兰鸽发布了新的文献求助10
13秒前
jielailai完成签到,获得积分10
13秒前
yangkunmedical完成签到,获得积分10
15秒前
斯文败类应助hahaha123213123采纳,获得10
15秒前
核桃发布了新的文献求助10
15秒前
今天你开组会了吗完成签到,获得积分10
15秒前
璐璐完成签到 ,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029