清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A transformer-based approach for novel fault detection and fault classification/diagnosis in manufacturing: A rotary system application

马氏距离 分类器(UML) 数据挖掘 工程类 故障检测与隔离 计算机科学 模式识别(心理学) 人工智能 预言 变压器 可靠性工程 执行机构 电气工程 电压
作者
Haiyue Wu,Matthew J. Triebe,John W. Sutherland
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:67: 439-452 被引量:57
标识
DOI:10.1016/j.jmsy.2023.02.018
摘要

Owing to the rapid development of Industry 4.0, new sensing and communication technologies have made vast amounts of untapped process data available. In order to transform such data assets into strong insights and knowledge that support manufacturing decisions, condition-based maintenance (CBM) and fault detection and diagnosis (FDD) have become effective ways to enhance equipment reliability and reduce costs. A successful data-driven FDD method must not only be capable of identifying the types of known faults, but also in detecting unseen or uncharacterized events during manufacturing system operation. To this end, this paper presents a Transformer-based classifier that can efficiently identify different known types and severity levels of fault conditions, in addition to novel fault detection. In this method, time-frequency spectrograms transformed from raw vibration signals are input to the classifier for known fault classification. Utilizing the advanced feature extracting performance of the classifier, a simple yet effective technique based on Mahalanobis distance is adopted to detect whether the fault comes from a previously unseen fault condition. When a novel condition is detected, the model is subsequently retrained using the novel data in an incremental learning manner. The proposed method is verified by an experimental case study with data collected from a testbed that has many features representative of common manufacturing equipment. The results demonstrated that the proposed method has superior performance in both fault diagnosis and novelty identification when compared with the baseline models and a cutting-edge model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongtao发布了新的文献求助10
3秒前
ceeray23发布了新的文献求助40
20秒前
栀子红了完成签到 ,获得积分10
36秒前
aikeyan完成签到 ,获得积分10
38秒前
ceeray23发布了新的文献求助20
41秒前
忒寒碜完成签到,获得积分10
52秒前
橙子完成签到 ,获得积分10
53秒前
追梦发布了新的文献求助10
59秒前
英俊的铭应助笨笨的寄真采纳,获得10
1分钟前
顺利毕业完成签到 ,获得积分10
1分钟前
默默完成签到 ,获得积分10
1分钟前
1分钟前
tyro完成签到,获得积分10
1分钟前
husky完成签到,获得积分10
1分钟前
zzhui完成签到,获得积分10
1分钟前
徐伟康完成签到 ,获得积分10
1分钟前
Aswl完成签到 ,获得积分10
1分钟前
1分钟前
冷傲凝琴完成签到,获得积分10
1分钟前
LEE123完成签到,获得积分10
2分钟前
ceeray23发布了新的文献求助50
2分钟前
ming123ah完成签到,获得积分10
2分钟前
西瓜完成签到 ,获得积分10
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
小小完成签到,获得积分10
2分钟前
大力的紊发布了新的文献求助50
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
CHEN完成签到 ,获得积分10
3分钟前
LJ_2完成签到 ,获得积分10
3分钟前
dingding发布了新的文献求助10
3分钟前
3分钟前
laber完成签到,获得积分0
3分钟前
zxx完成签到 ,获得积分10
3分钟前
开心完成签到 ,获得积分10
3分钟前
虞无声完成签到,获得积分10
3分钟前
3分钟前
harden9159完成签到,获得积分10
3分钟前
wbh发布了新的文献求助10
3分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990809
求助须知:如何正确求助?哪些是违规求助? 3532233
关于积分的说明 11256603
捐赠科研通 3271081
什么是DOI,文献DOI怎么找? 1805229
邀请新用户注册赠送积分活动 882302
科研通“疑难数据库(出版商)”最低求助积分说明 809236