Synthesis of Prospective Multiple Time Points F-18 FDG PET Images from a Single Scan Using a Supervised Generative Adversarial Network

成像体模 人工智能 图像质量 公制(单位) 生成对抗网络 计算机科学 人工神经网络 核医学 深度学习 模式识别(心理学) 图像(数学) 计算机视觉 数学 医学 运营管理 经济
作者
Merhnoosh Karimipourfard,Sedigheh Sina,Fereshteh Khodadai Shoshtari,Mehrsadat Alavi
出处
期刊:Nuklearmedizin-nuclear Medicine [Schattauer Verlag]
卷期号:62 (02): 61-72 被引量:5
标识
DOI:10.1055/a-2026-0784
摘要

The cumulative activity map estimation are essential tools for patient specific dosimetry with high accuracy, which is estimated using biokinetic models instead of patient dynamic data or the number of static PET scans, owing to economical and time-consuming points of view. In the era of deep learning applications in medicine, the pix-to-pix (p2 p) GAN neural networks play a significant role in image translation between imaging modalities. In this pilot study, we extended the p2 p GAN networks to generate PET images of patients at different times according to a 60 min scan time after the injection of F-18 FDG. In this regard, the study was conducted in two sections: phantom and patient studies. In the phantom study section, the SSIM, PSNR, and MSE metric results of the generated images varied from 0.98-0.99, 31-34 and 1-2 respectively and the fine-tuned Resnet-50 network classified the different timing images with high performance. In the patient study, these values varied from 0.88-0.93, 36-41 and 1.7-2.2, respectively and the classification network classified the generated images in the true group with high accuracy. The results of phantom studies showed high values of evaluation metrics owing to ideal image quality conditions. However, in the patient study, promising results were achieved which showed that the image quality and training data number affected the network performance. This study aims to assess the feasibility of p2 p GAN network application for different timing image generation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐秋完成签到,获得积分10
1秒前
YQ57发布了新的文献求助30
1秒前
论文顺利发布了新的文献求助10
2秒前
2秒前
赘婿应助小草采纳,获得10
2秒前
4秒前
情怀应助科研通管家采纳,获得10
5秒前
ED应助科研通管家采纳,获得10
6秒前
qsw完成签到,获得积分10
6秒前
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得30
6秒前
WWshu应助科研通管家采纳,获得10
6秒前
努努力发布了新的文献求助10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
7秒前
黄紫红蓝应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得30
7秒前
耶耶应助科研通管家采纳,获得10
7秒前
结实白柏应助科研通管家采纳,获得10
7秒前
小宋应助科研通管家采纳,获得20
7秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
WWshu应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
dypdyp应助科研通管家采纳,获得10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966742
求助须知:如何正确求助?哪些是违规求助? 3512237
关于积分的说明 11162366
捐赠科研通 3247107
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804432