Survey on Genetic Programming and Machine Learning Techniques for Heuristic Design in Job Shop Scheduling

计算机科学 流水车间调度 作业车间调度 调度(生产过程) 遗传程序设计 超启发式 遗传算法 启发式 机器学习 数学优化 人工智能 工业工程 数学 工程类 地铁列车时刻表 机器人学习 操作系统 机器人 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 147-167 被引量:44
标识
DOI:10.1109/tevc.2023.3255246
摘要

Job shop scheduling (JSS) is a process of optimizing the use of limited resources to improve the production efficiency. JSS has a wide range of applications, such as order picking in the warehouse and vaccine delivery scheduling under a pandemic. In real-world applications, the production environment is often complex due to dynamic events, such as job arrivals over time and machine breakdown. Scheduling heuristics, e.g., dispatching rules, have been popularly used to prioritize the candidates such as machines in manufacturing to make good schedules efficiently. Genetic programming (GP), has shown its superiority in learning scheduling heuristics for JSS automatically due to its flexible representation. This survey first provides comprehensive discussions of recent designs of GP algorithms on different types of JSS. In addition, we notice that in the recent years, a range of machine learning techniques, such as feature selection and multitask learning, have been adapted to improve the effectiveness and efficiency of scheduling heuristic design with GP. However, there is no survey to discuss the strengths and weaknesses of these recent approaches. To fill this gap, this article provides a comprehensive survey on GP and machine learning techniques on automatic scheduling heuristic design for JSS. In addition, current issues and challenges are discussed to identify promising areas for automatic scheduling heuristic design in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助完美的海秋采纳,获得10
刚刚
思源应助星星采纳,获得10
1秒前
善学以致用应助啦啦采纳,获得10
1秒前
传奇3应助勤劳的慕卉采纳,获得10
1秒前
不安的凡发布了新的文献求助10
2秒前
重要哈密瓜,数据线完成签到,获得积分20
5秒前
xy完成签到,获得积分10
5秒前
Hello应助NZH采纳,获得10
8秒前
语上完成签到,获得积分10
8秒前
9秒前
烟花应助乐橙采纳,获得10
11秒前
13秒前
13秒前
cqnuly发布了新的文献求助30
13秒前
李健应助Anderson732采纳,获得10
15秒前
15秒前
所所应助夏时安采纳,获得10
16秒前
BEN发布了新的文献求助10
17秒前
yxkooo发布了新的文献求助10
17秒前
18秒前
李y梅子发布了新的文献求助20
18秒前
19秒前
今后应助djbj2022采纳,获得10
19秒前
19秒前
junsizzz完成签到,获得积分10
19秒前
星际发布了新的文献求助10
20秒前
21秒前
leolee完成签到 ,获得积分10
23秒前
nini完成签到,获得积分10
23秒前
啦啦发布了新的文献求助10
23秒前
PROPELLER发布了新的文献求助30
23秒前
23秒前
24秒前
我是老大应助wei采纳,获得10
24秒前
25秒前
sue发布了新的文献求助10
26秒前
乐乐应助搞怪慕凝采纳,获得10
26秒前
26秒前
Anderson732发布了新的文献求助10
27秒前
Zbmd完成签到,获得积分10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238376
求助须知:如何正确求助?哪些是违规求助? 2883778
关于积分的说明 8231645
捐赠科研通 2551751
什么是DOI,文献DOI怎么找? 1380237
科研通“疑难数据库(出版商)”最低求助积分说明 648987
邀请新用户注册赠送积分活动 624619