Survey on Genetic Programming and Machine Learning Techniques for Heuristic Design in Job Shop Scheduling

计算机科学 流水车间调度 作业车间调度 调度(生产过程) 遗传程序设计 超启发式 遗传算法 启发式 机器学习 数学优化 人工智能 工业工程 数学 工程类 地铁列车时刻表 机器人学习 操作系统 机器人 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 147-167 被引量:53
标识
DOI:10.1109/tevc.2023.3255246
摘要

Job shop scheduling (JSS) is a process of optimizing the use of limited resources to improve the production efficiency. JSS has a wide range of applications, such as order picking in the warehouse and vaccine delivery scheduling under a pandemic. In real-world applications, the production environment is often complex due to dynamic events, such as job arrivals over time and machine breakdown. Scheduling heuristics, e.g., dispatching rules, have been popularly used to prioritize the candidates such as machines in manufacturing to make good schedules efficiently. Genetic programming (GP), has shown its superiority in learning scheduling heuristics for JSS automatically due to its flexible representation. This survey first provides comprehensive discussions of recent designs of GP algorithms on different types of JSS. In addition, we notice that in the recent years, a range of machine learning techniques, such as feature selection and multitask learning, have been adapted to improve the effectiveness and efficiency of scheduling heuristic design with GP. However, there is no survey to discuss the strengths and weaknesses of these recent approaches. To fill this gap, this article provides a comprehensive survey on GP and machine learning techniques on automatic scheduling heuristic design for JSS. In addition, current issues and challenges are discussed to identify promising areas for automatic scheduling heuristic design in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大佬虎发布了新的文献求助10
2秒前
江秋白完成签到 ,获得积分10
3秒前
liu完成签到,获得积分10
3秒前
Jasper应助123.采纳,获得10
3秒前
Hollow完成签到,获得积分10
5秒前
5秒前
Faith完成签到,获得积分10
6秒前
啦啦啦完成签到,获得积分10
6秒前
6秒前
大个应助aaaaa采纳,获得10
10秒前
咕噜噜发布了新的文献求助10
11秒前
SciGPT应助多金采纳,获得30
11秒前
14秒前
16秒前
小巧的诗双完成签到,获得积分10
16秒前
咕噜噜完成签到,获得积分10
17秒前
17秒前
18秒前
科研通AI5应助zzzooouu采纳,获得10
18秒前
小羊先生完成签到 ,获得积分10
18秒前
18秒前
科研通AI5应助十一苗采纳,获得10
19秒前
20秒前
XY发布了新的文献求助10
20秒前
20秒前
123.发布了新的文献求助10
21秒前
21秒前
23秒前
23秒前
24秒前
2101203142发布了新的文献求助30
24秒前
万能图书馆应助biglixiang采纳,获得30
25秒前
jzw发布了新的文献求助10
25秒前
JamesPei应助777采纳,获得10
26秒前
27秒前
28秒前
28秒前
YDY发布了新的文献求助10
29秒前
aaaaa发布了新的文献求助10
30秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674041
求助须知:如何正确求助?哪些是违规求助? 3229463
关于积分的说明 9785742
捐赠科研通 2939976
什么是DOI,文献DOI怎么找? 1611554
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736344