Survey on Genetic Programming and Machine Learning Techniques for Heuristic Design in Job Shop Scheduling

计算机科学 流水车间调度 作业车间调度 调度(生产过程) 遗传程序设计 超启发式 遗传算法 启发式 机器学习 数学优化 人工智能 工业工程 数学 工程类 地铁列车时刻表 机器人学习 操作系统 机器人 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 147-167 被引量:102
标识
DOI:10.1109/tevc.2023.3255246
摘要

Job shop scheduling (JSS) is a process of optimizing the use of limited resources to improve the production efficiency. JSS has a wide range of applications, such as order picking in the warehouse and vaccine delivery scheduling under a pandemic. In real-world applications, the production environment is often complex due to dynamic events, such as job arrivals over time and machine breakdown. Scheduling heuristics, e.g., dispatching rules, have been popularly used to prioritize the candidates such as machines in manufacturing to make good schedules efficiently. Genetic programming (GP), has shown its superiority in learning scheduling heuristics for JSS automatically due to its flexible representation. This survey first provides comprehensive discussions of recent designs of GP algorithms on different types of JSS. In addition, we notice that in the recent years, a range of machine learning techniques, such as feature selection and multitask learning, have been adapted to improve the effectiveness and efficiency of scheduling heuristic design with GP. However, there is no survey to discuss the strengths and weaknesses of these recent approaches. To fill this gap, this article provides a comprehensive survey on GP and machine learning techniques on automatic scheduling heuristic design for JSS. In addition, current issues and challenges are discussed to identify promising areas for automatic scheduling heuristic design in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一条蛆完成签到 ,获得积分10
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
baileys发布了新的文献求助10
1秒前
2秒前
XIAOSHUAI完成签到,获得积分10
3秒前
3秒前
旦皋发布了新的文献求助10
4秒前
Cris发布了新的文献求助10
4秒前
小二郎应助Yuki采纳,获得10
4秒前
勤恳数据线完成签到,获得积分10
4秒前
就离谱完成签到,获得积分10
5秒前
6秒前
胡不言发布了新的文献求助10
7秒前
9秒前
科目三应助露露采纳,获得10
9秒前
搞怪隶发布了新的文献求助20
10秒前
10秒前
小蘑菇应助沉默诗柳采纳,获得10
11秒前
11秒前
SJJ应助pollen06采纳,获得10
11秒前
13秒前
14秒前
14秒前
tangnan发布了新的文献求助10
14秒前
14秒前
Ray发布了新的文献求助10
14秒前
Akim应助一叶扁舟采纳,获得10
15秒前
15秒前
15秒前
胡不言完成签到,获得积分10
16秒前
farr发布了新的文献求助50
16秒前
科研通AI6.1应助mmyq采纳,获得10
16秒前
16秒前
感动清炎完成签到,获得积分10
17秒前
年轻代丝完成签到,获得积分10
17秒前
Owen应助baileys采纳,获得10
17秒前
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736632
求助须知:如何正确求助?哪些是违规求助? 5367001
关于积分的说明 15333469
捐赠科研通 4880391
什么是DOI,文献DOI怎么找? 2622848
邀请新用户注册赠送积分活动 1571730
关于科研通互助平台的介绍 1528573