Survey on Genetic Programming and Machine Learning Techniques for Heuristic Design in Job Shop Scheduling

计算机科学 流水车间调度 作业车间调度 调度(生产过程) 遗传程序设计 超启发式 遗传算法 启发式 机器学习 数学优化 人工智能 工业工程 数学 工程类 地铁列车时刻表 机器人学习 操作系统 机器人 移动机器人
作者
Fangfang Zhang,Yi Mei,Su Nguyen,Mengjie Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 147-167 被引量:102
标识
DOI:10.1109/tevc.2023.3255246
摘要

Job shop scheduling (JSS) is a process of optimizing the use of limited resources to improve the production efficiency. JSS has a wide range of applications, such as order picking in the warehouse and vaccine delivery scheduling under a pandemic. In real-world applications, the production environment is often complex due to dynamic events, such as job arrivals over time and machine breakdown. Scheduling heuristics, e.g., dispatching rules, have been popularly used to prioritize the candidates such as machines in manufacturing to make good schedules efficiently. Genetic programming (GP), has shown its superiority in learning scheduling heuristics for JSS automatically due to its flexible representation. This survey first provides comprehensive discussions of recent designs of GP algorithms on different types of JSS. In addition, we notice that in the recent years, a range of machine learning techniques, such as feature selection and multitask learning, have been adapted to improve the effectiveness and efficiency of scheduling heuristic design with GP. However, there is no survey to discuss the strengths and weaknesses of these recent approaches. To fill this gap, this article provides a comprehensive survey on GP and machine learning techniques on automatic scheduling heuristic design for JSS. In addition, current issues and challenges are discussed to identify promising areas for automatic scheduling heuristic design in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼依白完成签到 ,获得积分10
刚刚
领导范儿应助十四吉采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
任贱贱完成签到,获得积分20
3秒前
小马甲应助言木禾采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
简单喀秋莎完成签到,获得积分10
6秒前
6秒前
CodeCraft应助菠萝披萨采纳,获得10
6秒前
风趣绿竹完成签到,获得积分10
7秒前
傲娇的秋莲完成签到,获得积分20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
小明发布了新的文献求助10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
天天快乐应助科研通管家采纳,获得30
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
无花果应助einspringen采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
yu发布了新的文献求助30
8秒前
8秒前
9秒前
Levan完成签到,获得积分10
9秒前
bamboo应助科研通管家采纳,获得20
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
求助人员应助科研通管家采纳,获得30
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
蜉蝣完成签到,获得积分10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
大力帽子应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667