Li‐Ion Transfer Mechanism of Ambient‐Temperature Solid Polymer Electrolyte toward Lithium Metal Battery

材料科学 电解质 锂(药物) 聚合物 阳极 离子电导率 化学工程 阴极 无机化学 物理化学 电极 复合材料 化学 医学 工程类 内分泌学
作者
Su Wang,Qifang Sun,Qing Zhang,Chen Li,Chaoran Xu,Yue Ma,Xixi Shi,Hongzhou Zhang,Dawei Song,Lianqi Zhang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:13 (16) 被引量:67
标识
DOI:10.1002/aenm.202204036
摘要

Abstract The low ionic conductivity and short service life of solid polymer electrolytes (SPEs) limit the application of ambient‐temperature polymer lithium metal batteries, which is perhaps a result of the inherent restricted segment movement of the polymer at room temperature. Herein, an ambient‐temperature dual‐layer solid polymer electrolyte is developed and the related working mechanisms are innovatively investigated. In the strategy, poly(propylene carbonate) (PPC)/succinonitrile (SN) contacts with the cathode while polyethylene oxide (PEO)/Li 7 La 3 Zr 2 O 12 is adopted near the anode. Molecular dynamics simulations demonstrate the formation of solvated sheath‐like structure [SN···Li + ], which demonstrates strong interaction with polymers (PPC···[SN···Li + ]/PEO···[SN···Li + ]). Further density functional theory calculations show that these structures, allow rapid transport of Li ions through polymer segments. These results are confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Therefore, the Li‐ion transport mechanism for ambient‐temperature SPEs can be reasonably revealed. Remarkably, the binding energy between PPC and SN is stronger than that of PEO, which helps avoid the parasitic reaction between SN and Li. A low overpotential of 55 mV is exhibited for Li/Li symmetrical cells after 1000 h. Notably, a capacity retention of 86.3% is maintained for LiNi 0.6 Co 0.2 Mn 0.2 O 2 /Li cell at 25 °C, implying good application potential in ambient‐temperature high voltage lithium metal batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孔大漂亮完成签到,获得积分10
1秒前
2秒前
打打应助HopeStar采纳,获得10
2秒前
2秒前
科研通AI5应助标致小伙采纳,获得30
2秒前
有风发布了新的文献求助10
2秒前
2秒前
路在脚下完成签到 ,获得积分10
2秒前
bkagyin应助GOODYUE采纳,获得10
3秒前
Jasper应助彩色的蓝天采纳,获得10
3秒前
詹严青发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
郭翔完成签到,获得积分10
4秒前
Yeong发布了新的文献求助10
5秒前
jh完成签到 ,获得积分10
5秒前
syq完成签到,获得积分10
6秒前
sfw完成签到,获得积分10
6秒前
7秒前
光亮面包完成签到 ,获得积分10
7秒前
小猪啵比完成签到 ,获得积分10
7秒前
小智发布了新的文献求助10
7秒前
毛慢慢发布了新的文献求助10
7秒前
lilac应助1234567890采纳,获得10
8秒前
OYE发布了新的文献求助10
8秒前
木木发布了新的文献求助10
9秒前
zhy完成签到,获得积分10
10秒前
10秒前
自由的刺猬完成签到,获得积分20
10秒前
潇洒甜瓜发布了新的文献求助10
11秒前
jessie完成签到,获得积分10
11秒前
化学胖子完成签到,获得积分10
11秒前
12秒前
CTL关闭了CTL文献求助
12秒前
詹严青完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
顾矜应助Long采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759