Front-face excitation-emission matrix fluorescence spectroscopy combined with interpretable deep learning for the rapid identification of the storage year of Ningxia wolfberry

人工智能 计算机科学 面子(社会学概念) 鉴定(生物学) 激发 基质(化学分析) 荧光光谱法 前线(军事) 光谱学 荧光 环境科学 化学 物理 光学 气象学 植物 天文 色谱法 语言学 生物 哲学 量子力学
作者
Xiaolei Yan,Hai‐Long Wu,Bin Wang,Tong Wang,Yao Chen,An‐Qi Chen,Kun Huang,Yue-Yue Chang,Jian Yang,Ru Qin Yu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:295: 122617-122617 被引量:2
标识
DOI:10.1016/j.saa.2023.122617
摘要

Ningxia wolfberry stored for many years may be disguised as fresh wolfberry by unscrupulous traders and sold for huge profits. In this work, the front-face excitation-emission matrix (FF-EEM) fluorescence spectroscopy coupled with interpretable deep learning was proposed to identify the storage year of Ningxia wolfberry in a lossless, fast and accurate way. Alternating trilinear decomposition (ATLD) algorithm was used to decompose the three-way data array obtained by Ningxia wolfberry samples, extracting the chemically meaningful information. Meanwhile, a convolutional neural network (CNN) model for the identification of the storage year of Ningxia wolfberry, called EEMnet, was proposed. The model successfully classified wolfberry samples from different storage years by extracting the subtle feature differences of the spectra, and the correct classification rate of the training set, test set and prediction set was more than 98%. In addition, a series of interpretability analyses were implemented to break the "black box" of the deep learning model. These results indicated that the method based on FF-EEM fluorescence spectroscopy combined with EEMnet could quickly and accurately identify the year of Ningxia wolfberry in a green way, providing a new idea for the identification of the storage years of Chinese medicinal materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
赘婿应助皮谷雪采纳,获得10
2秒前
慕青应助小王爱科研采纳,获得10
2秒前
2秒前
li发布了新的文献求助10
3秒前
善学以致用应助Qi采纳,获得10
3秒前
3秒前
4秒前
悦悦发布了新的文献求助10
4秒前
5秒前
orixero应助坚强的妖妖采纳,获得10
5秒前
坤坤探花发布了新的文献求助10
5秒前
5秒前
6秒前
白华苍松发布了新的文献求助10
6秒前
7秒前
SciGPT应助孟孟采纳,获得10
8秒前
Lucille完成签到,获得积分10
8秒前
jiang发布了新的文献求助10
8秒前
华仔应助gao采纳,获得10
8秒前
文字头-D发布了新的文献求助10
10秒前
真开心发布了新的文献求助30
10秒前
11秒前
11秒前
FashionBoy应助111采纳,获得10
11秒前
fairy完成签到,获得积分10
12秒前
赵文悦完成签到,获得积分10
12秒前
诚心的泥猴桃完成签到,获得积分10
12秒前
852应助眯眯眼的世界采纳,获得10
12秒前
12秒前
liulongchao发布了新的文献求助20
12秒前
14秒前
ch发布了新的文献求助10
14秒前
小马甲应助SHIKAMARU采纳,获得10
14秒前
June发布了新的文献求助10
15秒前
坤坤探花完成签到,获得积分20
15秒前
黑暗系发布了新的文献求助10
15秒前
文字头-D完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137