Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐嘿嘿完成签到,获得积分10
刚刚
今后应助w1kend采纳,获得10
1秒前
luo完成签到,获得积分10
1秒前
1秒前
徐甜完成签到 ,获得积分10
3秒前
zhizhi完成签到,获得积分10
3秒前
3秒前
4秒前
eric888应助wencan采纳,获得10
4秒前
乐乐应助Serena采纳,获得10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
Syne_发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Siriluck完成签到 ,获得积分10
10秒前
luo发布了新的文献求助10
10秒前
wyw完成签到 ,获得积分10
11秒前
徐哈哈完成签到,获得积分10
11秒前
July完成签到 ,获得积分10
12秒前
上官若男应助keyantongxdl采纳,获得10
12秒前
123发布了新的文献求助10
12秒前
13秒前
孤雁北上发布了新的文献求助10
14秒前
15秒前
16秒前
刘振扬完成签到,获得积分10
17秒前
月下独酌完成签到,获得积分10
18秒前
zzzz完成签到,获得积分20
19秒前
20秒前
21秒前
蓝天应助ll200207采纳,获得10
21秒前
香蕉诗蕊应助Syne_采纳,获得10
22秒前
去码头整点薯条完成签到,获得积分10
22秒前
22秒前
可爱的函函应助里已经采纳,获得20
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680022
求助须知:如何正确求助?哪些是违规求助? 4995227
关于积分的说明 15171337
捐赠科研通 4839788
什么是DOI,文献DOI怎么找? 2593645
邀请新用户注册赠送积分活动 1546635
关于科研通互助平台的介绍 1504749