Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
聪明璎完成签到,获得积分10
2秒前
无情豌豆发布了新的文献求助10
3秒前
单文豪发布了新的文献求助10
3秒前
爆米花应助古月采纳,获得10
4秒前
4秒前
yar给zhi的求助进行了留言
5秒前
5秒前
7秒前
8秒前
Aura发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助美丽梦秋采纳,获得10
9秒前
10秒前
研友_VZGvVn发布了新的文献求助10
11秒前
maxin完成签到,获得积分10
13秒前
寒树发布了新的文献求助10
13秒前
tutt发布了新的文献求助10
14秒前
liu完成签到 ,获得积分10
14秒前
Dou_Xiaowen发布了新的文献求助10
14秒前
研友_VZGvVn完成签到,获得积分10
15秒前
xiaoxiao发布了新的文献求助10
15秒前
16秒前
YY完成签到,获得积分10
17秒前
欧博发布了新的文献求助10
18秒前
研友_VZG7GZ应助寒树采纳,获得10
18秒前
赘婿应助ivyjianjie采纳,获得10
18秒前
我先睡了发布了新的文献求助10
19秒前
爆米花应助偤萸采纳,获得10
19秒前
YY发布了新的文献求助10
20秒前
完美世界应助cd采纳,获得30
21秒前
Aura完成签到,获得积分10
22秒前
坦率抽屉发布了新的文献求助10
22秒前
velen发布了新的文献求助10
22秒前
冉冉完成签到,获得积分10
23秒前
24秒前
linmo发布了新的文献求助10
25秒前
26秒前
领导范儿应助科研通管家采纳,获得10
27秒前
Rondab应助科研通管家采纳,获得20
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432