Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wl17865313955发布了新的文献求助10
1秒前
Catherine_Song完成签到 ,获得积分10
2秒前
冰点完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
结实乐荷完成签到,获得积分20
6秒前
zhw297发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
9秒前
durance完成签到,获得积分10
11秒前
酷波er应助春亦晚采纳,获得10
11秒前
11秒前
12秒前
kiteWYL完成签到,获得积分10
12秒前
贪玩的小蜜蜂完成签到,获得积分10
13秒前
小蘑菇应助xixi采纳,获得10
13秒前
13秒前
Zhua子完成签到,获得积分10
13秒前
13秒前
jovrtic发布了新的文献求助10
13秒前
英姑应助聪慧仇天采纳,获得10
14秒前
14秒前
鲜艳的梦柏完成签到,获得积分10
15秒前
Adzuki0812发布了新的文献求助10
16秒前
9089090发布了新的文献求助10
16秒前
打打应助罗氏集团采纳,获得10
16秒前
17秒前
18秒前
daniel完成签到,获得积分10
18秒前
xy完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
嗯很好发布了新的文献求助10
20秒前
jovrtic完成签到,获得积分10
20秒前
知足的憨人*-*完成签到,获得积分10
21秒前
完美世界应助Zysplus采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548123
求助须知:如何正确求助?哪些是违规求助? 4633417
关于积分的说明 14631222
捐赠科研通 4575059
什么是DOI,文献DOI怎么找? 2508825
邀请新用户注册赠送积分活动 1485072
关于科研通互助平台的介绍 1456096