Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jkdzp发布了新的文献求助10
刚刚
走过的风发布了新的文献求助10
刚刚
1秒前
田博文应助xuxuxu采纳,获得10
1秒前
1秒前
在水一方应助波波采纳,获得10
1秒前
yanning完成签到,获得积分20
2秒前
2秒前
火星上的诗兰完成签到,获得积分10
2秒前
2秒前
2秒前
桐桐应助聪明萤采纳,获得10
2秒前
2秒前
爆米花应助冉柒采纳,获得10
3秒前
牛马婕完成签到,获得积分10
3秒前
vivre223发布了新的文献求助10
3秒前
文献求助发布了新的文献求助10
3秒前
JJJJJin发布了新的文献求助20
4秒前
jor666发布了新的文献求助20
4秒前
浮游应助sxk采纳,获得10
4秒前
小星星完成签到 ,获得积分10
5秒前
5秒前
傲娇的笑白完成签到 ,获得积分10
5秒前
CipherSage应助硝基采纳,获得10
5秒前
汪进辉_Will完成签到,获得积分10
6秒前
iwww发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
李健应助凤迎雪飘采纳,获得10
7秒前
jaybaggio完成签到,获得积分10
7秒前
快乐薯条完成签到,获得积分10
7秒前
傲娇皮皮虾完成签到 ,获得积分10
8秒前
realvx完成签到,获得积分10
8秒前
8秒前
8秒前
害羞香菇应助Yuanyuan采纳,获得10
8秒前
李敏完成签到 ,获得积分20
8秒前
tobasco发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510526
求助须知:如何正确求助?哪些是违规求助? 4605168
关于积分的说明 14493221
捐赠科研通 4540370
什么是DOI,文献DOI怎么找? 2487953
邀请新用户注册赠送积分活动 1470219
关于科研通互助平台的介绍 1442645