Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
高贵谷芹完成签到,获得积分10
1秒前
科研通AI6应助小羊羔采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
2秒前
zzz发布了新的文献求助10
2秒前
2秒前
3秒前
maomao201026发布了新的文献求助10
3秒前
yan123完成签到,获得积分10
3秒前
共享精神应助chai采纳,获得10
3秒前
Apricity应助wuxunxun2015采纳,获得10
3秒前
3秒前
tina完成签到,获得积分10
4秒前
科研顺利发布了新的文献求助10
5秒前
yang123发布了新的文献求助10
5秒前
6秒前
zzz发布了新的文献求助10
6秒前
熊猫发布了新的文献求助10
6秒前
6秒前
www发布了新的文献求助10
7秒前
7秒前
琳67发布了新的文献求助10
7秒前
cult发布了新的文献求助10
7秒前
明理飞风完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
FashionBoy应助肖紫若采纳,获得10
9秒前
lelele发布了新的文献求助10
9秒前
AnasYusuf发布了新的文献求助30
9秒前
kk发布了新的文献求助10
9秒前
科目三应助陈艺鹏采纳,获得10
9秒前
9秒前
科研通AI6应助神奇小药丸采纳,获得10
9秒前
10秒前
活力砖家完成签到,获得积分10
10秒前
10秒前
jiysh发布了新的文献求助10
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620260
求助须知:如何正确求助?哪些是违规求助? 4704917
关于积分的说明 14929736
捐赠科研通 4761567
什么是DOI,文献DOI怎么找? 2550911
邀请新用户注册赠送积分活动 1513652
关于科研通互助平台的介绍 1474592