Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
5秒前
7秒前
宅多点应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
宅多点应助科研通管家采纳,获得10
7秒前
natmed应助科研通管家采纳,获得10
8秒前
8秒前
打打应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
草东树应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
沈达完成签到,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
warithy应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
shhoing应助科研通管家采纳,获得10
8秒前
蓝天应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小木没有烦恼完成签到 ,获得积分10
9秒前
无辜的井完成签到,获得积分10
10秒前
qayqay003发布了新的文献求助10
10秒前
沈达发布了新的文献求助10
11秒前
mm完成签到,获得积分10
14秒前
14秒前
18秒前
弗洛伊德完成签到 ,获得积分10
24秒前
精明芷巧完成签到 ,获得积分10
24秒前
斯文败类应助wdchenaic采纳,获得10
27秒前
Hello应助王玉娇采纳,获得10
27秒前
情怀应助李瑜婷采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645517
关于积分的说明 14675412
捐赠科研通 4586664
什么是DOI,文献DOI怎么找? 2516501
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951