Investigation into maize seed disease identification based on deep learning and multi-source spectral information fusion techniques

支持向量机 主成分分析 高光谱成像 特征(语言学) 随机森林 卷积神经网络 特征提取 线性判别分析 人工智能 偏最小二乘回归 融合 模式识别(心理学) 计算机科学 机器学习 语言学 哲学
作者
Peng Xu,Lixia Fu,Kang Xu,Wenbin Sun,Qian Tan,Yunpeng Zhang,Xiantao Zha,Ranbing Yang
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:119: 105254-105254 被引量:26
标识
DOI:10.1016/j.jfca.2023.105254
摘要

Detection of diseases in maize seeds is crucial for their quality evaluation and disease control. This study uses hyperspectral imaging (HSI) and deep learning methods for analysis and identification. Successive projections algorithm (SPA) and principal component analysis (PCA) were applied to extract feature variables, and data-level fusion, feature-level fusion, and decision-level fusion were employed to process different types of feature data. Classification models with different fusion strategies were built using partial least squares discriminant analysis (PLS-DA), random forest (RF), support vector machine (SVM), and convolutional neural network (CNN-RB). The results show that the modeling performance based on spectral features outperforms that based on color and texture features. Among them, the accuracy of CNN-RB based on feature variable modeling was 94.44 %, which was better than RF (93.89 %) and SVM (92.78 %), and only second to PLS-DA (97.78 %). Different fusion strategies had different performances, among which the decision-level fusion had the best effect, with an accuracy of 98.12 %. The study shows that the proposed CNN-RB model can effectively enhance the feature extraction ability of the network, and the multi-source information fusion technique can improve the recognition performance of the model. The method has great potential for application in seed disease detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
重要英姑发布了新的文献求助10
1秒前
Lvweieg完成签到,获得积分10
1秒前
事事顺利发布了新的文献求助10
2秒前
2秒前
knight发布了新的文献求助10
2秒前
caozhi完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
大模型应助碧蓝雨安采纳,获得10
3秒前
3秒前
li完成签到 ,获得积分10
3秒前
结实半邪完成签到,获得积分10
4秒前
4秒前
柠檬九分酸完成签到,获得积分10
5秒前
5秒前
Silieze完成签到,获得积分10
5秒前
哆啦A涵发布了新的文献求助10
6秒前
222发布了新的文献求助10
6秒前
7秒前
科研通AI6应助jyyg采纳,获得30
7秒前
桥桥发布了新的文献求助10
7秒前
小二郎应助zjl采纳,获得10
7秒前
浮游应助skyer1采纳,获得10
8秒前
8秒前
可爱的函函应助tuzi采纳,获得50
10秒前
领导范儿应助十一号采纳,获得10
10秒前
丹寒完成签到,获得积分10
10秒前
10秒前
顾矜应助HYF采纳,获得10
11秒前
咪咪摸摸发布了新的文献求助10
11秒前
chen发布了新的文献求助10
12秒前
优秀发布了新的文献求助20
12秒前
Murphy_H完成签到,获得积分10
12秒前
小解完成签到 ,获得积分10
12秒前
李爱国应助asd_1采纳,获得10
12秒前
13秒前
14秒前
Jerry发布了新的文献求助20
14秒前
16秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426