Application of Generative Adversarial Network Tabular Data Synthesis for Federal Learning-based Thermal Process Performance Prediction

机器学习 计算机科学 人工智能 过程(计算) 性能预测 数据建模 新颖性 数据挖掘 模拟 数据库 神学 操作系统 哲学
作者
Lewei Xu,Yong Liu
标识
DOI:10.1109/iccc56324.2022.10065986
摘要

Process performance prediction now has a fresh and efficient method thanks to machine learning. Existing techniques do not provide good data protection capabilities. The novelty of this work is proposed and validated the use of virtual synthetic thermal processing process performance data as input to machine learning models, where the ‘train on synthetic data - test on real data’ approach is used to pioneer a novel framework for predicting thermal processing process performance. First, the data generated by the table generation adversarial network is applied to the federal learning model for performance prediction. Based on the input-output relationship curve, an evaluation index is proposed for the generation of data for thermal processing performance prediction. Finally, the effect of the generated sample size on the prediction of the machine learning model is investigated. The model is trained using 10,00 synthetic design data and tested using 915 real experimental data. The results show that the synthetic data contribute to the good performance prediction capability of the machine learning model. The use of this method will help to extend the application of federal learning based thermal processing process performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
隐形曼青应助一站到底采纳,获得10
1秒前
整齐珩发布了新的文献求助10
1秒前
3秒前
望月暑生发布了新的文献求助10
3秒前
大模型应助LJbe2o采纳,获得10
4秒前
acca发布了新的文献求助30
4秒前
6秒前
良辰应助拉丝耶耶采纳,获得10
6秒前
Chillym完成签到 ,获得积分10
7秒前
卡卡发布了新的文献求助10
8秒前
险胜应助科研通管家采纳,获得30
8秒前
Akim应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
QDU应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得30
8秒前
共享精神应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
bkagyin应助gaoyue高月采纳,获得10
9秒前
9秒前
李大仁发布了新的文献求助10
12秒前
12秒前
墨染清风凉完成签到,获得积分20
12秒前
快乐自行车完成签到,获得积分10
12秒前
Catalysis123发布了新的文献求助30
13秒前
orixero应助和谐谷蕊采纳,获得10
13秒前
13秒前
飞飞鱼发布了新的文献求助10
13秒前
15秒前
科研小白完成签到 ,获得积分10
15秒前
peterlee完成签到,获得积分10
17秒前
卡卡完成签到,获得积分10
17秒前
17秒前
18秒前
林子青完成签到,获得积分10
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297