Difference-Enhancement Triplet Network for Change Detection in Multispectral Images

多光谱图像 判别式 特征提取 模式识别(心理学) 变更检测 深度学习 计算机科学 特征(语言学) 卷积神经网络 特征学习 人工神经网络 人工智能 哲学 语言学
作者
Wuxia Zhang,Yuhang Zhang,Li-Ming Su,Chao Mei,Xiaoqiang Lu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5
标识
DOI:10.1109/lgrs.2023.3312734
摘要

Change detection is the process of detecting and evaluating differences from bitemporal remote sensing images. Deep-learning-based change detection methods have become the mainstream approaches due to their discriminative features and good change detection performance. However, most of the existing deep-learning-based change detection methods did not perform well in detecting subtle changes and did not fully explore the underlying information of features learned by deep neural networks. To address the above-mentioned problems, we propose an end-to-end deep neural network for multispectral change detection, named difference-enhancement triplet network (DETNet). DETNet mainly includes two modules: the triplet feature extraction module and the difference feature learning module. First, the triplet feature extraction module uses the triple CNN as the backbone to extract representative spatial–spectral features. Second, the difference feature learning module mines the underlying information of difference representations of learned spatial–spectral features to detect subtle changes. Finally, the model uses a compound loss function, which includes triplet loss, contrastive loss, and cross-entropy loss, to guide DETNet toward learning more discriminative features. Extensive experimental results of the proposed DETNet and other state-of-the-art methods on four datasets demonstrate its superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放的傲柔完成签到 ,获得积分10
2秒前
2秒前
Tuotuo完成签到 ,获得积分0
3秒前
吕易巧发布了新的文献求助10
3秒前
4秒前
禹平露发布了新的文献求助10
5秒前
Akim应助清风采纳,获得10
9秒前
11秒前
顾矜应助李梓权采纳,获得10
11秒前
NexusExplorer应助克林沙星采纳,获得10
11秒前
xiaotianli完成签到,获得积分10
13秒前
我爱学习完成签到,获得积分10
13秒前
Orange应助cc采纳,获得10
13秒前
FIN应助多情的幼旋采纳,获得10
14秒前
猪猪hero应助Canda采纳,获得10
14秒前
SciGPT应助wualexandra采纳,获得10
14秒前
Jocosa发布了新的文献求助50
14秒前
15秒前
kuzb发布了新的文献求助10
15秒前
16秒前
16秒前
CodeCraft应助122319采纳,获得10
17秒前
三角初华关注了科研通微信公众号
18秒前
20秒前
研友_VZG7GZ应助达达采纳,获得10
21秒前
21秒前
21秒前
24秒前
科研通AI5应助奥德修斯凡采纳,获得10
24秒前
禹平露完成签到,获得积分10
25秒前
cocolu给李慕尧的求助进行了留言
25秒前
奋斗的钥匙完成签到,获得积分10
26秒前
安详中蓝完成签到 ,获得积分10
27秒前
28秒前
29秒前
科研通AI5应助小彭采纳,获得10
29秒前
30秒前
30秒前
31秒前
DZ完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Population Genetics 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3495880
求助须知:如何正确求助?哪些是违规求助? 3080887
关于积分的说明 9165085
捐赠科研通 2773881
什么是DOI,文献DOI怎么找? 1522222
邀请新用户注册赠送积分活动 705736
科研通“疑难数据库(出版商)”最低求助积分说明 703085