Hierarchical multimodal-fusion of physiological signals for emotion recognition with scenario adaption and contrastive alignment

计算机科学 人工智能 模态(人机交互) 特征(语言学) 模式识别(心理学) 模式 语音识别 机器学习 社会科学 语言学 哲学 社会学
作者
Jiehao Tang,Zhuang Ma,Kaiyu Gan,Jianhua Zhang,Zhong Yin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102129-102129 被引量:15
标识
DOI:10.1016/j.inffus.2023.102129
摘要

The lack of complementary affective responses from both the central and peripheral nervous systems could limit the performance of emotion recognition with the single-modal physiological signal. However, when integrating multimodalities, a direct fusion may ignore the heterogeneous nature of multiple feature domains from one modality to another. Besides, there is a risk that the distribution of the multimodal physiological responses may vary across different affective scenarios for stimulating an identical emotional category. The inter-individual variation may also increase due to the superposition of the biometric information from the multimodal features. To tackle these issues, we present a hierarchical multimodal network for robust heterogeneous physiological representations (RHPRNet). First, we applied a spatial-frequency pattern extractor to identify the electroencephalogram (EEG) representations in both the spatial and frequency domains. Next, inter-domain and inter-modality affective encoders are separately applied to the statistic-complexity EEG features and multimodal peripheral features, respectively. All the learned representations are integrated via a hierarchical fusion module. To model the multi-peak patterns stimulated by different affective scenarios, we designed a scenario-adapting pretraining stage. A random contrastive training loss was also applied to mitigate the inter-individual variance. In the end, we performed adequate experiments to examine the performance of the RHPRNet based on three publicly available multimodal databases combined with two validation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zimo发布了新的文献求助10
刚刚
刚刚
刚刚
henryhc_完成签到 ,获得积分10
1秒前
Lucas应助WFR采纳,获得10
1秒前
wudiii233完成签到,获得积分10
1秒前
吃花生酱的猫完成签到,获得积分10
2秒前
2秒前
2秒前
library2025完成签到,获得积分10
2秒前
淡淡书白完成签到,获得积分10
2秒前
2秒前
3秒前
蓝莓物语完成签到,获得积分10
4秒前
4秒前
yyc2023完成签到,获得积分10
5秒前
坤坤完成签到,获得积分10
5秒前
hammer_zhang完成签到,获得积分10
5秒前
joker_k完成签到,获得积分10
5秒前
linmu完成签到 ,获得积分10
5秒前
zhao完成签到 ,获得积分10
5秒前
5秒前
atmorz发布了新的文献求助10
6秒前
小赞完成签到,获得积分10
8秒前
8秒前
8秒前
共享精神应助酷炫小馒头采纳,获得10
8秒前
8秒前
冰勾板勾完成签到,获得积分10
8秒前
Sarvl发布了新的文献求助10
8秒前
喻白玉完成签到,获得积分10
9秒前
想查文献的小黄完成签到,获得积分10
9秒前
10秒前
andrew完成签到,获得积分10
10秒前
11秒前
科研通AI5应助小羊采纳,获得30
11秒前
π1完成签到,获得积分10
11秒前
伏地魔完成签到,获得积分10
12秒前
yy发布了新的文献求助10
12秒前
山山而川完成签到 ,获得积分10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746471
求助须知:如何正确求助?哪些是违规求助? 3289359
关于积分的说明 10064159
捐赠科研通 3005740
什么是DOI,文献DOI怎么找? 1650360
邀请新用户注册赠送积分活动 785858
科研通“疑难数据库(出版商)”最低求助积分说明 751296