Hierarchical multimodal-fusion of physiological signals for emotion recognition with scenario adaption and contrastive alignment

计算机科学 人工智能 模态(人机交互) 特征(语言学) 模式识别(心理学) 模式 语音识别 机器学习 社会科学 语言学 哲学 社会学
作者
Jiehao Tang,Zhuang Ma,Kaiyu Gan,Jianhua Zhang,Zhong Yin
出处
期刊:Information Fusion [Elsevier]
卷期号:103: 102129-102129 被引量:33
标识
DOI:10.1016/j.inffus.2023.102129
摘要

The lack of complementary affective responses from both the central and peripheral nervous systems could limit the performance of emotion recognition with the single-modal physiological signal. However, when integrating multimodalities, a direct fusion may ignore the heterogeneous nature of multiple feature domains from one modality to another. Besides, there is a risk that the distribution of the multimodal physiological responses may vary across different affective scenarios for stimulating an identical emotional category. The inter-individual variation may also increase due to the superposition of the biometric information from the multimodal features. To tackle these issues, we present a hierarchical multimodal network for robust heterogeneous physiological representations (RHPRNet). First, we applied a spatial-frequency pattern extractor to identify the electroencephalogram (EEG) representations in both the spatial and frequency domains. Next, inter-domain and inter-modality affective encoders are separately applied to the statistic-complexity EEG features and multimodal peripheral features, respectively. All the learned representations are integrated via a hierarchical fusion module. To model the multi-peak patterns stimulated by different affective scenarios, we designed a scenario-adapting pretraining stage. A random contrastive training loss was also applied to mitigate the inter-individual variance. In the end, we performed adequate experiments to examine the performance of the RHPRNet based on three publicly available multimodal databases combined with two validation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
漠雨寒灯发布了新的文献求助10
1秒前
1秒前
张兴博发布了新的文献求助30
1秒前
TONONO完成签到,获得积分10
1秒前
KAER完成签到,获得积分20
2秒前
无情的函发布了新的文献求助10
2秒前
Yannis完成签到 ,获得积分10
2秒前
阳光怀亦完成签到,获得积分10
3秒前
3秒前
3秒前
华仔应助tk采纳,获得30
4秒前
4秒前
Ayiiiii发布了新的文献求助10
5秒前
5秒前
lixiangrui110发布了新的文献求助10
5秒前
luluzheng应助wkktx采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
guzhfia发布了新的文献求助10
6秒前
小林子完成签到 ,获得积分10
6秒前
7秒前
刘zx完成签到,获得积分10
7秒前
斯文败类应助小巧的凝荷采纳,获得10
7秒前
archerwangms发布了新的文献求助10
7秒前
8秒前
我爱科研发布了新的文献求助10
8秒前
8秒前
优美伟泽完成签到 ,获得积分10
8秒前
情怀应助aaa采纳,获得10
9秒前
小二郎应助孙佳星采纳,获得10
9秒前
cherish'发布了新的文献求助10
9秒前
G_Y发布了新的文献求助10
9秒前
ShawnJohn应助李李李采纳,获得10
9秒前
9秒前
9秒前
Ooops完成签到,获得积分10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274