Hierarchical multimodal-fusion of physiological signals for emotion recognition with scenario adaption and contrastive alignment

计算机科学 人工智能 模态(人机交互) 特征(语言学) 模式识别(心理学) 模式 语音识别 机器学习 社会科学 哲学 语言学 社会学
作者
Jiehao Tang,Zhuang Ma,Kaiyu Gan,Jianhua Zhang,Zhong Yin
出处
期刊:Information Fusion [Elsevier BV]
卷期号:103: 102129-102129 被引量:15
标识
DOI:10.1016/j.inffus.2023.102129
摘要

The lack of complementary affective responses from both the central and peripheral nervous systems could limit the performance of emotion recognition with the single-modal physiological signal. However, when integrating multimodalities, a direct fusion may ignore the heterogeneous nature of multiple feature domains from one modality to another. Besides, there is a risk that the distribution of the multimodal physiological responses may vary across different affective scenarios for stimulating an identical emotional category. The inter-individual variation may also increase due to the superposition of the biometric information from the multimodal features. To tackle these issues, we present a hierarchical multimodal network for robust heterogeneous physiological representations (RHPRNet). First, we applied a spatial-frequency pattern extractor to identify the electroencephalogram (EEG) representations in both the spatial and frequency domains. Next, inter-domain and inter-modality affective encoders are separately applied to the statistic-complexity EEG features and multimodal peripheral features, respectively. All the learned representations are integrated via a hierarchical fusion module. To model the multi-peak patterns stimulated by different affective scenarios, we designed a scenario-adapting pretraining stage. A random contrastive training loss was also applied to mitigate the inter-individual variance. In the end, we performed adequate experiments to examine the performance of the RHPRNet based on three publicly available multimodal databases combined with two validation approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
baobaobaozi发布了新的文献求助10
1秒前
2秒前
彭于晏应助zhangxinting0818采纳,获得10
3秒前
研友_Ze0vBn发布了新的文献求助10
4秒前
卡乐瑞咩吹可完成签到,获得积分10
5秒前
归尘发布了新的文献求助10
5秒前
6秒前
典雅的纸飞机完成签到 ,获得积分10
7秒前
9秒前
hehe完成签到,获得积分10
10秒前
10秒前
yx_cheng应助GT采纳,获得30
11秒前
可口可乐完成签到 ,获得积分10
12秒前
14秒前
科研鸟发布了新的文献求助10
14秒前
细腻灵安发布了新的文献求助10
16秒前
小宋同学不能怂完成签到 ,获得积分10
17秒前
干饭大王应助wenwen采纳,获得10
18秒前
18秒前
研友_Ze0vBn完成签到,获得积分10
19秒前
jim完成签到 ,获得积分10
19秒前
Sewerant完成签到 ,获得积分10
20秒前
LUO完成签到 ,获得积分10
20秒前
21秒前
Akim应助Pericardium采纳,获得10
21秒前
干饭大王应助科研鸟采纳,获得10
22秒前
22秒前
凉白开完成签到,获得积分10
22秒前
我是老大应助monned采纳,获得10
24秒前
24秒前
小姜完成签到,获得积分10
25秒前
清秀人杰发布了新的文献求助10
26秒前
yx_cheng应助GT采纳,获得30
26秒前
LC发布了新的文献求助10
27秒前
jack完成签到 ,获得积分10
27秒前
心灵美凝竹完成签到 ,获得积分10
28秒前
28秒前
29秒前
小姜发布了新的文献求助10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511680
关于积分的说明 11159133
捐赠科研通 3246277
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343