Artificial intelligence based de-novo design for novel Plasmodium falciparum plasmepsin (PM) X inhibitors

对接(动物) 计算生物学 恶性疟原虫 虚拟筛选 药物发现 同源建模 立体化学 化学 生物 生物化学 疟疾 医学 护理部 免疫学
作者
Ssemuyiga Charles,Rajani Kanta Mahapatra
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:: 1-16 被引量:2
标识
DOI:10.1080/07391102.2023.2279700
摘要

Plasmodium falciparum is the leading cause of malaria with 627,000 deaths annually. Invasion and egress are critical stages for successful infection of the host yet depend on proteins that are extensively pre-processed by various maturases. Plasmepsins (Plasmodium pepsins, abbreviated PM, I-X) are pepsin-like aspartic proteases that are involved in almost all stages of the life cycle. The goal of this study was to use de-novo generative modeling techniques to create novel potential PfPMX inhibitors. A total of 4325 compounds were virtually screened by structural-based docking methods. The obtained hits were utilized to refine a structure-based Ligand Neural Network (L-Net) generative model to generate related compounds. The obtained optimal L-Net Compounds with smina scores ≤ -5.00KCalmol-1 and QED ≥ 0.35 were further taken for amplification utilizing Ligand Based Transformer modeling using Deep generative learning (Drug Explorer/DrugEx). The resulting hits were then subjected to XP Glide conventional Molecular docking and QikProp ADMET screening; molecules with XP Docking score ≤ -7.00KCalmol-1 were retained. Based on their Glide ligand efficiency, originality, and uniqueness, 30 compounds were chosen for binding affinity and MM_GBSA energy determination. Following Induced Fit docking (IFD), 7 compounds were taken for 50 ns MD simulations and FEP/MD calculations. This study reported novel potential PfPMX inhibitors with acceptable ADMET profiles and reasonable synthetic accessibility scores, as well as sufficient docking scores against other PMs were generated. The PfPMX inhibitors reported in this article are promising antimalarials for the next stages of drug development, and the first of their kind to be investigated thoroughly.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听话的白易完成签到,获得积分20
刚刚
南医李云龙发布了新的文献求助100
2秒前
WZH发布了新的文献求助10
5秒前
斯文败类应助俊逸梦蕊采纳,获得10
5秒前
阿布发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
大个应助Serein采纳,获得10
6秒前
7秒前
面向杂志编论文应助Ting采纳,获得20
7秒前
7秒前
9秒前
suo754发布了新的文献求助10
9秒前
七只狐狸完成签到,获得积分10
9秒前
66ds发布了新的文献求助10
9秒前
乐乐应助听话的白易采纳,获得10
11秒前
wonhui完成签到,获得积分20
12秒前
敏感手套发布了新的文献求助10
12秒前
优雅松鼠发布了新的文献求助10
12秒前
12秒前
13秒前
Orange应助朴素夜梦采纳,获得10
13秒前
13秒前
包容的绝义完成签到,获得积分10
15秒前
66ds完成签到,获得积分10
15秒前
16秒前
16秒前
LIYY发布了新的文献求助10
17秒前
superbeier发布了新的文献求助10
20秒前
20秒前
Akim应助糖果采纳,获得10
20秒前
优雅松鼠完成签到,获得积分10
23秒前
子车茗完成签到,获得积分0
25秒前
25秒前
领导范儿应助王111采纳,获得10
25秒前
标致荷花发布了新的文献求助10
27秒前
YY完成签到,获得积分10
29秒前
29秒前
陈牛逼完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149493
求助须知:如何正确求助?哪些是违规求助? 2800565
关于积分的说明 7840531
捐赠科研通 2458065
什么是DOI,文献DOI怎么找? 1308242
科研通“疑难数据库(出版商)”最低求助积分说明 628460
版权声明 601706