AffinityVAE: A multi-objective model for protein-ligand affinity prediction and drug design

可解释性 自编码 计算机科学 人工智能 机器学习 特征(语言学) 配体(生物化学) 蛋白质配体 集合(抽象数据类型) 药物发现 数据挖掘 化学 人工神经网络 生物信息学 生物 哲学 语言学 生物化学 受体 有机化学 程序设计语言
作者
Mengying Wang,Weimin Li,Xinyi Yu,Yin Luo,Koeun Han,Can Wang,Qun Jin
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:107: 107971-107971 被引量:3
标识
DOI:10.1016/j.compbiolchem.2023.107971
摘要

In the prediction of protein-ligand affinity, the traditional methods require a large amount of computing resources, and have certain limitations in predicting and simulating the structural changes. Although employing data-driven approaches can yield favorable outcomes in deep learning, it entails a lack of interpretability. Some methods may require additional structural information or domain knowledge to support the interpretation, which may limit their applicability. This paper proposes an affinity variational autoencoder (AffinityVAE) using interaction feature mapping and a variational autoencoder, which consists of a multi-objective model capable of end-to-end affinity prediction and drug discovery. In this study, the limitations of affinity prediction in terms of interpretability are tackled by proposing the concept of a protein-ligand interaction feature map. This increases the diversity and quantity of protein-ligand binding data by designing an adaptive autoencoder of target chemical properties to generate new ligands similar to known ligands and adding them to the original training set. AffinityVAE is then retrained using this extended training set to further validate the protein-ligand binding affinity prediction. Comparisons were conducted between the AffinityVAE and recent methods to demonstrate the high efficiency of the proposed model. The experimental results show that AffinityVAE has very high prediction performance, and it has the potential to enhance the diversity and the amount of protein-ligand binding data, which promotes the drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sak完成签到,获得积分10
刚刚
Shuo Yang发布了新的文献求助20
刚刚
呜呜呜呜发布了新的文献求助10
刚刚
在水一方应助hhzz采纳,获得10
刚刚
旧是完成签到 ,获得积分10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
杨小胖完成签到 ,获得积分10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
mm发布了新的文献求助10
2秒前
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
shouyu29应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
RC_Wang应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得30
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
归海含烟完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
shire应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
匹诺曹发布了新的文献求助10
4秒前
唐画完成签到 ,获得积分10
4秒前
4秒前
4秒前
淡淡采白关注了科研通微信公众号
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808