MAGD: Minimal Attack Graph Generation Dynamically in Cyber Security

蜜罐 计算机科学 构造(python库) 可扩展性 计算机安全 网络安全 图形 寄主(生物学) 理论计算机科学 分布式计算 计算机网络 生态学 数据库 生物
作者
Maryam Mohammadzad,Jaber Karimpour,Farnaz Mahan
出处
期刊:Computer Networks [Elsevier]
卷期号:236: 110004-110004
标识
DOI:10.1016/j.comnet.2023.110004
摘要

Cyber security faces challenges in detecting and mitigating complex attacks. Security solutions have employed Attack Graphs (AGs) for modeling multi-stage attacks, but traditional AGs suffer from scalability issues and may miss new vulnerabilities and attack paths. Also, traditional AGs construct the graph using information about previously known attacks. In this paper, we propose Minimal Attack Graph Generation Dynamically (MAGD), which leverages data from a deception system based on Honeypots to generate a minimal AG dynamically. In this paper, the AG has been constructed from real-time attacker’s behavior data directly. In addition, MAGD specifically focuses on modeling the attacker’s behavior at the host level, in contrast to traditional network-based AGs that encompass all possible attack paths at the network level. MAGD contains three custom algorithms to construct attacker behavior, generate a minimal AG, and continuously update the graph with new attack information. Complexity analyses demonstrate that MAGD’s generation process can accomplish within polynomial time. Our approach offers several advantages over traditional AGs, including the ability to model attackers’ real-time behavior, construct attackers’ action paths in the target host, and detect new vulnerabilities and attack paths in the victim host. Also, MAGD includes information about the effects of the actions in the target system. This information can be used for other security purposes. We demonstrate MAGD’s efficacy through a case study. MAGD provides a more effective way to detect and mitigate cyber threats by utilizing Honeypot data and proposed algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助Sunshine采纳,获得10
刚刚
刚刚
FashionBoy应助seven采纳,获得10
1秒前
谷策发布了新的文献求助10
1秒前
Jasper应助Nancy采纳,获得10
1秒前
科目三应助小犬采纳,获得10
1秒前
Fiona发布了新的文献求助10
1秒前
酸奶球完成签到 ,获得积分10
3秒前
科研小白鼠关注了科研通微信公众号
3秒前
情怀应助科研通管家采纳,获得10
3秒前
大模型应助Yv采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
小白发布了新的文献求助20
4秒前
cc发布了新的文献求助10
5秒前
5秒前
研友_LB3vXn完成签到,获得积分20
6秒前
FashionBoy应助风中天奇采纳,获得10
6秒前
wj完成签到,获得积分10
7秒前
如果多年后完成签到 ,获得积分10
7秒前
段段完成签到,获得积分10
9秒前
liyang发布了新的文献求助10
10秒前
10秒前
汉堡包应助百里瓶窑采纳,获得10
11秒前
CodeCraft应助cc采纳,获得10
11秒前
liuxl完成签到,获得积分10
13秒前
cbbb发布了新的文献求助10
13秒前
无限毛豆完成签到 ,获得积分10
14秒前
黎明完成签到,获得积分10
14秒前
lennon962464发布了新的文献求助10
15秒前
15秒前
云落完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
Geist完成签到 ,获得积分10
17秒前
18秒前
左友铭发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148271
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7834708
捐赠科研通 2456632
什么是DOI,文献DOI怎么找? 1307357
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655