计算机科学
人工智能
可解释性
断层(地质)
可微函数
机器学习
梯度下降
人工神经网络
数学
数学分析
地震学
地质学
作者
Chao He,Hongmei Shi,Jianbo Li
标识
DOI:10.1016/j.ymssp.2023.110846
摘要
A surge of transfer fault diagnosis techniques has been proposed to guarantee the safe operation of traction motor systems. However, existing efforts highly depend on the availability of fault data in source domain, which is rare in practice due to the regular maintenance. Fortunately, self-customized testbeds provide an opportunity to easily obtain fault data, assuming that the simulated data can be utilized to monitor the real-world traction motor systems via the cross-machine diagnosis method. Besides, current deep learning-based cross-machine fault diagnosis methods suffer from the poor physical interpretability and the troublesome hype-parameter selection. To tackle aforementioned issues, a one-stage Interpretable and Differentiable STFT cross-machine dual-driven adaptation Network (IDSN) is proposed. In IDSN, a new paradigm termed interpretable differentiable STFT layer is devised, where a derivable coefficient is introduced to adjust pivotal parameters of STFT such as window length by the gradient descent. Prominently, it is a plug-and-play module, which can be embedded into the arbitrary typical network without conflict. Besides, a novel adaptive trade-off coefficient is developed to tackle the weight matching of the domain discrepancy metric. Finally, to ensure the reliability and effectiveness of cross-machine diagnosis, a concise yet valid smoothed joint maximum mean discrepancy is proposed, which simultaneously promotes intra-class compactness and inter-class separability. The results of experiments confirm that the proposed IDSN outperforms the state of the art.
科研通智能强力驱动
Strongly Powered by AbleSci AI