WF-Transformer: Learning Temporal Features for Accurate Anonymous Traffic Identification by Using Transformer Networks

计算机科学 变压器 卷积神经网络 特征提取 实时计算 深度学习 交通分类 人工智能 计算机网络 电压 工程类 电气工程 服务质量
作者
Qiang Zhou,Liangmin Wang,Huijuan Zhu,Tong Lu,Victor S. Sheng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 30-43 被引量:4
标识
DOI:10.1109/tifs.2023.3318966
摘要

Website Fingerprinting (WF) is a network traffic mining technique for anonymous traffic identification, which enables a local adversary to identify the target website that an anonymous network user is browsing. WF attacks based on deep convolutional neural networks (CNN) get the state-of-the-art anonymous traffic classification performance. However, due to the locality restriction of CNN architecture for feature extraction on sequence data, these methods ignore the temporal feature extraction in the anonymous traffic analysis. In this paper, we present Website Fingerprinting Transformer (WF-Transformer), a novel anonymous network traffic analysis method that leverages Transformer networks for temporal feature extraction of traffic traces and improves the classification performance of Tor encrypted traffic. The architecture of WF-Transformer is specially designed for traffic trace processing and can classify anonymous traffic effectively. Furthermore, we evaluate the performance of WF-Transformer in both closed-world and open-world scenarios. In the closed-world scenario, WF-Transformer attains 99.1% accuracy on Tor traffic without defenses, better than state-or-the-art attacks, and archives 92.1% accuracy on the traces defended by WTF-PAD method. In the open-world scenario, WF-Transformer has better precision and recall on both defended and non-defended traces. Furthermore, WF-Transformer with a short input length (2000 cells) outperforms the DF method with a long input length (5000 cells).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiongqiong完成签到,获得积分10
1秒前
淡定的依瑶完成签到,获得积分10
2秒前
江璃发布了新的文献求助10
4秒前
5秒前
6秒前
美丽的安珊完成签到,获得积分10
7秒前
7秒前
9秒前
Gilana完成签到,获得积分10
9秒前
xyh发布了新的文献求助10
9秒前
江璃完成签到,获得积分10
10秒前
TT发布了新的文献求助10
10秒前
美梦成真完成签到,获得积分10
11秒前
Gakay完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
szj完成签到,获得积分0
13秒前
旦皋完成签到,获得积分10
13秒前
赘婿应助花壳在逃野猪采纳,获得10
14秒前
卷卷完成签到,获得积分10
16秒前
JSY完成签到 ,获得积分20
16秒前
xyh完成签到,获得积分10
17秒前
小曾应助Florencia采纳,获得10
18秒前
神外王001完成签到 ,获得积分10
18秒前
23秒前
你是谁完成签到,获得积分10
24秒前
majf完成签到,获得积分10
25秒前
linhanwenzhou完成签到,获得积分10
25秒前
JSY关注了科研通微信公众号
25秒前
853225598完成签到,获得积分10
25秒前
798完成签到,获得积分10
26秒前
善学以致用应助董怼怼采纳,获得10
26秒前
妍儿完成签到,获得积分20
27秒前
隐形曼青应助高大的水壶采纳,获得10
27秒前
马哥二弟无敌完成签到 ,获得积分10
28秒前
29秒前
Florencia完成签到,获得积分10
29秒前
务实颜完成签到 ,获得积分10
29秒前
29秒前
amberzyc应助小远采纳,获得10
30秒前
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029