WF-Transformer: Learning Temporal Features for Accurate Anonymous Traffic Identification by Using Transformer Networks

计算机科学 变压器 卷积神经网络 特征提取 实时计算 深度学习 交通分类 人工智能 计算机网络 电压 工程类 电气工程 服务质量
作者
Qiang Zhou,Liangmin Wang,Huijuan Zhu,Tong Lu,Victor S. Sheng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 30-43 被引量:23
标识
DOI:10.1109/tifs.2023.3318966
摘要

Website Fingerprinting (WF) is a network traffic mining technique for anonymous traffic identification, which enables a local adversary to identify the target website that an anonymous network user is browsing. WF attacks based on deep convolutional neural networks (CNN) get the state-of-the-art anonymous traffic classification performance. However, due to the locality restriction of CNN architecture for feature extraction on sequence data, these methods ignore the temporal feature extraction in the anonymous traffic analysis. In this paper, we present Website Fingerprinting Transformer (WF-Transformer), a novel anonymous network traffic analysis method that leverages Transformer networks for temporal feature extraction of traffic traces and improves the classification performance of Tor encrypted traffic. The architecture of WF-Transformer is specially designed for traffic trace processing and can classify anonymous traffic effectively. Furthermore, we evaluate the performance of WF-Transformer in both closed-world and open-world scenarios. In the closed-world scenario, WF-Transformer attains 99.1% accuracy on Tor traffic without defenses, better than state-or-the-art attacks, and archives 92.1% accuracy on the traces defended by WTF-PAD method. In the open-world scenario, WF-Transformer has better precision and recall on both defended and non-defended traces. Furthermore, WF-Transformer with a short input length (2000 cells) outperforms the DF method with a long input length (5000 cells).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
乐乐应助顺利萃采纳,获得10
刚刚
QIN123456发布了新的文献求助10
1秒前
深情安青应助adverse采纳,获得10
1秒前
1秒前
WHaha发布了新的文献求助10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
易中华发布了新的文献求助10
2秒前
FashionBoy应助Elf采纳,获得10
3秒前
3秒前
3秒前
残剑月发布了新的文献求助10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
Wind应助科研通管家采纳,获得10
4秒前
张巨锋发布了新的文献求助10
4秒前
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
4秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Jenna发布了新的文献求助10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
xiaojinzi发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Zyxx发布了新的文献求助10
5秒前
SciGPT应助Planck采纳,获得10
6秒前
等待戈多发布了新的文献求助10
6秒前
shaonianzu完成签到 ,获得积分10
6秒前
FRANKFANG发布了新的文献求助10
7秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233