WF-Transformer: Learning Temporal Features for Accurate Anonymous Traffic Identification by Using Transformer Networks

计算机科学 变压器 卷积神经网络 特征提取 实时计算 深度学习 交通分类 人工智能 计算机网络 电压 工程类 电气工程 服务质量
作者
Qiang Zhou,Liangmin Wang,Huijuan Zhu,Tong Lu,Victor S. Sheng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 30-43 被引量:9
标识
DOI:10.1109/tifs.2023.3318966
摘要

Website Fingerprinting (WF) is a network traffic mining technique for anonymous traffic identification, which enables a local adversary to identify the target website that an anonymous network user is browsing. WF attacks based on deep convolutional neural networks (CNN) get the state-of-the-art anonymous traffic classification performance. However, due to the locality restriction of CNN architecture for feature extraction on sequence data, these methods ignore the temporal feature extraction in the anonymous traffic analysis. In this paper, we present Website Fingerprinting Transformer (WF-Transformer), a novel anonymous network traffic analysis method that leverages Transformer networks for temporal feature extraction of traffic traces and improves the classification performance of Tor encrypted traffic. The architecture of WF-Transformer is specially designed for traffic trace processing and can classify anonymous traffic effectively. Furthermore, we evaluate the performance of WF-Transformer in both closed-world and open-world scenarios. In the closed-world scenario, WF-Transformer attains 99.1% accuracy on Tor traffic without defenses, better than state-or-the-art attacks, and archives 92.1% accuracy on the traces defended by WTF-PAD method. In the open-world scenario, WF-Transformer has better precision and recall on both defended and non-defended traces. Furthermore, WF-Transformer with a short input length (2000 cells) outperforms the DF method with a long input length (5000 cells).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pu完成签到 ,获得积分10
刚刚
谦让可冥完成签到,获得积分10
刚刚
骆驼顶顶完成签到,获得积分20
刚刚
1秒前
zzx完成签到,获得积分20
1秒前
2秒前
yaxuandeng发布了新的文献求助10
2秒前
骆驼顶顶发布了新的文献求助10
3秒前
莽哥发布了新的文献求助10
3秒前
xxfsx完成签到,获得积分0
4秒前
迟迟完成签到 ,获得积分10
5秒前
5秒前
高挑的若雁完成签到 ,获得积分10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
5秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
日富一日完成签到 ,获得积分10
6秒前
乐乐应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
七院发布了新的文献求助50
6秒前
许砚完成签到,获得积分10
6秒前
secbox完成签到,获得积分0
7秒前
8秒前
谦让可冥发布了新的文献求助10
8秒前
zzx发布了新的文献求助10
8秒前
不再方里发布了新的文献求助10
9秒前
可爱的函函应助gwh采纳,获得10
9秒前
鳗鱼诗蕊发布了新的文献求助10
10秒前
LLM完成签到,获得积分20
10秒前
ZZY发布了新的文献求助10
11秒前
酷波er应助许砚采纳,获得10
12秒前
13秒前
13秒前
yangkang完成签到,获得积分10
14秒前
沈海完成签到,获得积分10
14秒前
大模型应助Cting采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284152
求助须知:如何正确求助?哪些是违规求助? 4437733
关于积分的说明 13814786
捐赠科研通 4318688
什么是DOI,文献DOI怎么找? 2370566
邀请新用户注册赠送积分活动 1365978
关于科研通互助平台的介绍 1329429