WF-Transformer: Learning Temporal Features for Accurate Anonymous Traffic Identification by Using Transformer Networks

计算机科学 变压器 卷积神经网络 特征提取 实时计算 深度学习 交通分类 人工智能 计算机网络 电压 工程类 电气工程 服务质量
作者
Qiang Zhou,Liangmin Wang,Huijuan Zhu,Tong Lu,Victor S. Sheng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 30-43 被引量:23
标识
DOI:10.1109/tifs.2023.3318966
摘要

Website Fingerprinting (WF) is a network traffic mining technique for anonymous traffic identification, which enables a local adversary to identify the target website that an anonymous network user is browsing. WF attacks based on deep convolutional neural networks (CNN) get the state-of-the-art anonymous traffic classification performance. However, due to the locality restriction of CNN architecture for feature extraction on sequence data, these methods ignore the temporal feature extraction in the anonymous traffic analysis. In this paper, we present Website Fingerprinting Transformer (WF-Transformer), a novel anonymous network traffic analysis method that leverages Transformer networks for temporal feature extraction of traffic traces and improves the classification performance of Tor encrypted traffic. The architecture of WF-Transformer is specially designed for traffic trace processing and can classify anonymous traffic effectively. Furthermore, we evaluate the performance of WF-Transformer in both closed-world and open-world scenarios. In the closed-world scenario, WF-Transformer attains 99.1% accuracy on Tor traffic without defenses, better than state-or-the-art attacks, and archives 92.1% accuracy on the traces defended by WTF-PAD method. In the open-world scenario, WF-Transformer has better precision and recall on both defended and non-defended traces. Furthermore, WF-Transformer with a short input length (2000 cells) outperforms the DF method with a long input length (5000 cells).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DY完成签到,获得积分0
刚刚
今后应助173678采纳,获得10
刚刚
水123发布了新的文献求助10
刚刚
Aqua完成签到,获得积分10
刚刚
orixero应助fengzi151采纳,获得10
刚刚
linkin完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
杨榆藤完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
dakjdia完成签到,获得积分10
3秒前
山楂完成签到,获得积分10
3秒前
包容傀斗发布了新的文献求助10
3秒前
probiotics完成签到,获得积分10
3秒前
chu发布了新的文献求助10
4秒前
时尚的雯完成签到 ,获得积分10
4秒前
4秒前
wanci应助一笑生花采纳,获得10
5秒前
靓丽的路灯完成签到,获得积分10
5秒前
miawei完成签到,获得积分10
5秒前
5秒前
lzl发布了新的文献求助10
5秒前
开心紫安发布了新的文献求助10
5秒前
茅十八完成签到,获得积分10
6秒前
可爱的香菇完成签到 ,获得积分10
6秒前
我是菜鸟19号完成签到,获得积分10
7秒前
7秒前
fddfs发布了新的文献求助10
8秒前
9秒前
10秒前
Lucas应助lyy采纳,获得10
10秒前
10秒前
10秒前
10秒前
丘比特应助1+1采纳,获得10
11秒前
11秒前
熬夜波比应助闾丘剑封采纳,获得10
11秒前
TONG发布了新的文献求助10
12秒前
xiaorui完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665118
求助须知:如何正确求助?哪些是违规求助? 4875227
关于积分的说明 15112135
捐赠科研通 4824320
什么是DOI,文献DOI怎么找? 2582694
邀请新用户注册赠送积分活动 1536665
关于科研通互助平台的介绍 1495279