WF-Transformer: Learning Temporal Features for Accurate Anonymous Traffic Identification by Using Transformer Networks

计算机科学 变压器 卷积神经网络 特征提取 实时计算 深度学习 交通分类 人工智能 计算机网络 电压 工程类 电气工程 服务质量
作者
Qiang Zhou,Liangmin Wang,Huijuan Zhu,Tong Lu,Victor S. Sheng
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 30-43 被引量:23
标识
DOI:10.1109/tifs.2023.3318966
摘要

Website Fingerprinting (WF) is a network traffic mining technique for anonymous traffic identification, which enables a local adversary to identify the target website that an anonymous network user is browsing. WF attacks based on deep convolutional neural networks (CNN) get the state-of-the-art anonymous traffic classification performance. However, due to the locality restriction of CNN architecture for feature extraction on sequence data, these methods ignore the temporal feature extraction in the anonymous traffic analysis. In this paper, we present Website Fingerprinting Transformer (WF-Transformer), a novel anonymous network traffic analysis method that leverages Transformer networks for temporal feature extraction of traffic traces and improves the classification performance of Tor encrypted traffic. The architecture of WF-Transformer is specially designed for traffic trace processing and can classify anonymous traffic effectively. Furthermore, we evaluate the performance of WF-Transformer in both closed-world and open-world scenarios. In the closed-world scenario, WF-Transformer attains 99.1% accuracy on Tor traffic without defenses, better than state-or-the-art attacks, and archives 92.1% accuracy on the traces defended by WTF-PAD method. In the open-world scenario, WF-Transformer has better precision and recall on both defended and non-defended traces. Furthermore, WF-Transformer with a short input length (2000 cells) outperforms the DF method with a long input length (5000 cells).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jason发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
二一完成签到 ,获得积分10
3秒前
17866533271发布了新的文献求助10
3秒前
lin完成签到,获得积分10
4秒前
5秒前
小强快跑发布了新的文献求助10
6秒前
失眠的访枫完成签到 ,获得积分10
8秒前
8秒前
呆梨医生完成签到,获得积分10
9秒前
wang完成签到,获得积分10
9秒前
red发布了新的文献求助10
10秒前
李华发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
12秒前
田様应助温婉的篮球采纳,获得10
13秒前
月光入梦发布了新的文献求助10
14秒前
科研通AI6应助cc采纳,获得30
15秒前
追寻师完成签到 ,获得积分10
15秒前
Hushluo完成签到,获得积分10
15秒前
Akim应助包容代芹采纳,获得10
16秒前
17秒前
wang发布了新的文献求助10
17秒前
科研通AI6应助oxear采纳,获得10
17秒前
花海发布了新的文献求助10
18秒前
饼干完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
勤奋雨完成签到,获得积分10
20秒前
乐观的凌兰完成签到 ,获得积分10
20秒前
专注的问寒应助cherrychou采纳,获得30
21秒前
22秒前
无昵称完成签到 ,获得积分10
22秒前
饼干发布了新的文献求助10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858