Fabrication of nitrogen-doped carbon on NiCoP electrocatalyst with flower-like structure for efficient hydrogen evolution reaction in alkaline solution

塔菲尔方程 电催化剂 过电位 材料科学 化学工程 催化作用 双金属片 碳纤维 电解质 分解水 无机化学 化学 电极 电化学 复合材料 物理化学 有机化学 光催化 复合数 工程类
作者
Jian Su,Yanxiu Liu,Nan Jiang,Bolong Jiang,Yuanyuan Wang,Xueqin Wang,Yanguang Chen,Hua Song
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:970: 172287-172287 被引量:3
标识
DOI:10.1016/j.jallcom.2023.172287
摘要

The development of hydrogen evolution catalysts with low cost, high activity, and outstanding stability has become an urgent need. Herein, we reported a novel and effective strategy for the in situ growth of NiCoP nanoparticles encapsulated in ultrathin nitrogen-doped porous carbon on nickel foam (NiCoP@NC/NF). Compared with NiCoP/NF, the NiCoP@NC/NF presented a much larger electrochemically active surface area (ECSA) (1402.9 cm2 mg−1), more abundant intrinsic HER active sites and lower charge-transfer resistance, leading to superior catalytic activity. The as-prepared NiCoP@NC/NF electrode exhibited extremely low overpotential η10 (77 mV) and Tafel slope (62.1 mV dec−1) for HER in 1.0 M KOH as the electrolyte. Importantly, due to the thin nitrogen-doped carbon layer, NiCoP@NC/NF showed considerably enhanced stability under the harsh conditions of long-term reaction. Density functional theory (DFT) calculations have indicated that the nitrogen-doped carbon of NiCoP@NC/NF permitted moderate trapping of hydrogen atoms and easy desorption of the resulting H2. Such impressive HER performance of the hybrid electrocatalyst is mainly attributed to the collective effects of elemental doping engineering between NC and NiCoP, the enlarged surface area/exposed catalytic active sites, and the lower transfer resistance due to the nitrogen-doping carbon. The present work proposed a controllable and feasible strategy for synthesizing bimetallic phosphides with unique morphology and high HER performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dotson完成签到,获得积分10
刚刚
Li完成签到,获得积分10
刚刚
炙热的羽毛完成签到,获得积分10
1秒前
星星完成签到,获得积分10
1秒前
xy完成签到,获得积分10
1秒前
爱听歌康乃馨完成签到,获得积分10
2秒前
2秒前
Owen应助reuslee采纳,获得10
2秒前
2秒前
owoow发布了新的文献求助10
3秒前
研友_Ze02Vn发布了新的文献求助30
3秒前
华仔应助王春起采纳,获得30
3秒前
星辰大海应助辰星未湮采纳,获得10
4秒前
夏夏发布了新的文献求助10
4秒前
4秒前
4秒前
大虫子完成签到,获得积分10
5秒前
yyg应助juckblack采纳,获得10
5秒前
lihaoyu发布了新的文献求助10
5秒前
zz完成签到,获得积分20
8秒前
chinh完成签到,获得积分10
8秒前
李健的小迷弟应助czcz采纳,获得10
9秒前
山橘月完成签到,获得积分20
9秒前
zxh完成签到,获得积分10
9秒前
每个人都完成签到,获得积分10
9秒前
迷人的冥完成签到,获得积分10
10秒前
自由的沛山完成签到,获得积分10
10秒前
高分子完成签到,获得积分10
10秒前
11秒前
11秒前
neao发布了新的文献求助10
11秒前
kelaibing完成签到,获得积分10
11秒前
12秒前
12秒前
山水有重逢完成签到,获得积分10
12秒前
疯狂的娃哈哈完成签到 ,获得积分10
12秒前
zier完成签到 ,获得积分10
12秒前
独特的凝云完成签到 ,获得积分10
12秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550646
求助须知:如何正确求助?哪些是违规求助? 3126911
关于积分的说明 9371446
捐赠科研通 2826139
什么是DOI,文献DOI怎么找? 1553554
邀请新用户注册赠送积分活动 724960
科研通“疑难数据库(出版商)”最低求助积分说明 714494