A Trend-Granulation-Based Fuzzy C-Means Algorithm for Clustering Interval-Valued Time Series

聚类分析 初始化 算法 模糊逻辑 造粒 动态时间归整 模糊聚类 粒度计算 数据挖掘 计算机科学 火焰团簇 数学 模式识别(心理学) CURE数据聚类算法 人工智能 粗集 物理 经典力学 程序设计语言
作者
Zonglin Yang,Fusheng Yu,Witold Pedrycz,Huilin Yang,Yuqing Tang,Chenxi Ouyang
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 1263-1277 被引量:1
标识
DOI:10.1109/tfuzz.2023.3321921
摘要

Along with the abundant appearance of interval-valued time series (ITS), the study on ITS clustering, especially on shape-based ITS clustering, is becoming increasingly important. As an effective approach to extracting trend information in time series, fuzzy trend-granulation addresses the needs of shape-based ITS clustering. However, when extracting trend information in ITS, unequal-size granules are inevitably produced, which makes ITS clustering difficult and challenging. Facing with this issue, this paper aims to generalize the widely used Fuzzy C-Means (FCM) algorithm to a fuzzy trend-granulation based FCM algorithm for ITS clustering. To this end, a suite of algorithms including ITS segmenting, segment merging and granule building algorithms are firstly developed for fuzzy trend-granulation of ITS, with which the given ITS are transformed into granular ITS which consist of double linear fuzzy information granules (DLFIGs) and may be of different lengths. With the defined distance between DLFIGs, the distance between granular ITS is further developed through the dynamic time warping (DTW) algorithm. In designing the fuzzy trend-granulation based FCM algorithm, the key step is to design the method for updating cluster prototypes to cope with the unequal lengths of granular ITS. Weighted DTW barycenter averaging (wDBA) method is a previously adopted prototype updating approach with the drawback of hardly changing the lengths of prototypes, which often makes prototypes less representative. Thus, a granule splitting and merging algorithm is designed to resolve this issue. Additionally, a prototype initialization method is also proposed to improve the clustering performance. The proposed fuzzy trend-granulation based FCM algorithm for clustering ITS, being a typical shape-based clustering algorithm, exhibits superior performance which is validated by the ablation experiments as well as the comparative experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯道言发布了新的文献求助10
刚刚
共享精神应助Jameson采纳,获得10
1秒前
albert666发布了新的文献求助20
2秒前
淡定的酬海关注了科研通微信公众号
2秒前
shirelylee发布了新的文献求助10
3秒前
Owen应助小文殊采纳,获得30
5秒前
5秒前
weishen完成签到,获得积分10
5秒前
Dabiel1213完成签到,获得积分10
8秒前
10秒前
无名完成签到,获得积分10
11秒前
12秒前
asdxsweef应助wsqg123采纳,获得10
12秒前
12秒前
毛豆应助背后的傥采纳,获得10
12秒前
感动依霜完成签到 ,获得积分10
14秒前
查丽发布了新的文献求助10
15秒前
小马甲应助shirelylee采纳,获得30
15秒前
16秒前
充电宝应助nancy张小嘿采纳,获得30
16秒前
李健应助老八采纳,获得10
16秒前
狂野白梅完成签到,获得积分10
17秒前
kk发布了新的文献求助10
17秒前
sff发布了新的文献求助10
18秒前
寻风完成签到,获得积分10
18秒前
历史真相完成签到,获得积分20
19秒前
hiiamwu完成签到 ,获得积分10
19秒前
shirelylee完成签到,获得积分10
19秒前
秦之之完成签到 ,获得积分10
22秒前
sally完成签到 ,获得积分10
22秒前
雨中客完成签到,获得积分10
25秒前
Orange应助狂野白梅采纳,获得10
25秒前
小龙龙发布了新的文献求助10
26秒前
26秒前
善学以致用应助冯道言采纳,获得10
26秒前
sa完成签到,获得积分10
27秒前
豪的花花完成签到,获得积分10
28秒前
杳鸢应助sff采纳,获得30
29秒前
lin完成签到,获得积分10
29秒前
古凊完成签到 ,获得积分10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3289376
求助须知:如何正确求助?哪些是违规求助? 2926393
关于积分的说明 8426911
捐赠科研通 2597568
什么是DOI,文献DOI怎么找? 1417242
科研通“疑难数据库(出版商)”最低求助积分说明 659637
邀请新用户注册赠送积分活动 642117