Joint sparse latent representation learning and dual manifold regularization for unsupervised feature selection

人工智能 模式识别(心理学) 特征学习 计算机科学 判别式 降维 稀疏逼近 子空间拓扑 特征选择 非线性降维 特征向量 拉普拉斯矩阵 机器学习 图形 理论计算机科学
作者
Mei‐Yu Huang,Hongmei Chen,Yong Mi,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:282: 111105-111105
标识
DOI:10.1016/j.knosys.2023.111105
摘要

As an effective dimensionality reduction method, unsupervised feature selection (UFS) focuses on the mutual correlations between high-dimensional data features but often overlooks the intrinsic relationships between instances. We also utilize pseudo-labels learned from the data to guide feature selection in UFS. However, the raw data space may contain noise and outliers, leading to a lower accuracy of the learned pseudo-label matrix. We propose a minimum-redundant UFS approach to tackle these problems through jointing sparse latent representation learning with dual manifold regularization (SLRDR). Firstly, SLRDR learns a subspace of latent representation by exploring the interconnection of original data. To enhance subspace sparsity, ℓ2,1-norm is applied to the residual matrix of latent representation learning. Pseudo-label matrix learning is then carried out in the high-quality latent space, resulting in effective pseudo-label information that can provide more useful guidance for sparse regression. Secondly, based on the manifold learning hypothesis, SLRDR exploits features' local structural properties in feature space and explores the association between data and labels, allowing the model to learn richer and more accurate structural information. In addition, ℓ2,1/2-norm is imposed on the weight matrix to obtain a minimum-redundant solution and select more discriminative features. Finally, an alternating iterative method is used for SLRDR to solve the optimization problem of the objective function, and the convergence of the model is theoretically analyzed. Besides, a series of comparative experiments with ten existing algorithms on nine benchmark datasets are used to verify the model's effectiveness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SSY发布了新的文献求助10
刚刚
1秒前
taff发布了新的文献求助10
1秒前
Xl发布了新的文献求助10
1秒前
1秒前
smm发布了新的文献求助10
1秒前
QiuQiu发布了新的文献求助10
2秒前
2秒前
浮游应助阿十采纳,获得10
2秒前
闪闪的摩托完成签到,获得积分10
3秒前
ZHY2023发布了新的文献求助10
3秒前
4秒前
liuhuayaxi发布了新的文献求助10
4秒前
KQ完成签到,获得积分10
4秒前
5秒前
5秒前
乐乐应助顺利萃采纳,获得10
5秒前
QIN123456发布了新的文献求助10
6秒前
深情安青应助adverse采纳,获得10
6秒前
6秒前
WHaha发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
易中华发布了新的文献求助10
7秒前
FashionBoy应助Elf采纳,获得10
8秒前
8秒前
8秒前
残剑月发布了新的文献求助10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
Wind应助科研通管家采纳,获得10
9秒前
张巨锋发布了新的文献求助10
9秒前
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233