Joint sparse latent representation learning and dual manifold regularization for unsupervised feature selection

人工智能 模式识别(心理学) 特征学习 计算机科学 判别式 降维 稀疏逼近 子空间拓扑 特征选择 非线性降维 特征向量 拉普拉斯矩阵 机器学习 图形 理论计算机科学
作者
Mei‐Yu Huang,Hongmei Chen,Yong Mi,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:282: 111105-111105
标识
DOI:10.1016/j.knosys.2023.111105
摘要

As an effective dimensionality reduction method, unsupervised feature selection (UFS) focuses on the mutual correlations between high-dimensional data features but often overlooks the intrinsic relationships between instances. We also utilize pseudo-labels learned from the data to guide feature selection in UFS. However, the raw data space may contain noise and outliers, leading to a lower accuracy of the learned pseudo-label matrix. We propose a minimum-redundant UFS approach to tackle these problems through jointing sparse latent representation learning with dual manifold regularization (SLRDR). Firstly, SLRDR learns a subspace of latent representation by exploring the interconnection of original data. To enhance subspace sparsity, ℓ2,1-norm is applied to the residual matrix of latent representation learning. Pseudo-label matrix learning is then carried out in the high-quality latent space, resulting in effective pseudo-label information that can provide more useful guidance for sparse regression. Secondly, based on the manifold learning hypothesis, SLRDR exploits features' local structural properties in feature space and explores the association between data and labels, allowing the model to learn richer and more accurate structural information. In addition, ℓ2,1/2-norm is imposed on the weight matrix to obtain a minimum-redundant solution and select more discriminative features. Finally, an alternating iterative method is used for SLRDR to solve the optimization problem of the objective function, and the convergence of the model is theoretically analyzed. Besides, a series of comparative experiments with ten existing algorithms on nine benchmark datasets are used to verify the model's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxm完成签到 ,获得积分10
1秒前
开心的秋寒完成签到,获得积分10
1秒前
黄少阳发布了新的文献求助10
3秒前
七栀完成签到,获得积分10
3秒前
yaya完成签到 ,获得积分10
5秒前
赘婿应助友好沛菡采纳,获得10
5秒前
果粒橙完成签到,获得积分20
5秒前
8秒前
mylian完成签到,获得积分10
9秒前
安静的花卷完成签到,获得积分10
10秒前
10秒前
黄少阳完成签到,获得积分20
11秒前
12秒前
Tinadai123456发布了新的文献求助10
13秒前
bkagyin应助幸福果汁采纳,获得10
15秒前
16秒前
英姑应助呼斯乐采纳,获得10
17秒前
高贵的往事完成签到,获得积分10
18秒前
剑诗杜康发布了新的文献求助10
19秒前
魏雨轩完成签到,获得积分10
19秒前
20秒前
上官若男应助感动水杯采纳,获得10
20秒前
大个应助完美的雨泽采纳,获得10
20秒前
20秒前
21秒前
年轻思山完成签到,获得积分10
22秒前
22秒前
沉默是金发布了新的文献求助10
24秒前
CAOHOU应助han采纳,获得10
24秒前
wanci应助卢苗苗采纳,获得10
24秒前
25秒前
年轻思山发布了新的文献求助10
26秒前
28秒前
28秒前
31秒前
感动水杯发布了新的文献求助10
31秒前
达瓦里希完成签到 ,获得积分10
32秒前
Lorain发布了新的文献求助30
32秒前
32秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546220
求助须知:如何正确求助?哪些是违规求助? 3977613
关于积分的说明 12316733
捐赠科研通 3645975
什么是DOI,文献DOI怎么找? 2007920
邀请新用户注册赠送积分活动 1043462
科研通“疑难数据库(出版商)”最低求助积分说明 932180