Joint sparse latent representation learning and dual manifold regularization for unsupervised feature selection

人工智能 模式识别(心理学) 特征学习 计算机科学 判别式 降维 稀疏逼近 子空间拓扑 特征选择 非线性降维 特征向量 拉普拉斯矩阵 机器学习 图形 理论计算机科学
作者
Mei‐Yu Huang,Hongmei Chen,Yong Mi,Chuan Luo,Shi‐Jinn Horng,Tianrui Li
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:282: 111105-111105
标识
DOI:10.1016/j.knosys.2023.111105
摘要

As an effective dimensionality reduction method, unsupervised feature selection (UFS) focuses on the mutual correlations between high-dimensional data features but often overlooks the intrinsic relationships between instances. We also utilize pseudo-labels learned from the data to guide feature selection in UFS. However, the raw data space may contain noise and outliers, leading to a lower accuracy of the learned pseudo-label matrix. We propose a minimum-redundant UFS approach to tackle these problems through jointing sparse latent representation learning with dual manifold regularization (SLRDR). Firstly, SLRDR learns a subspace of latent representation by exploring the interconnection of original data. To enhance subspace sparsity, ℓ2,1-norm is applied to the residual matrix of latent representation learning. Pseudo-label matrix learning is then carried out in the high-quality latent space, resulting in effective pseudo-label information that can provide more useful guidance for sparse regression. Secondly, based on the manifold learning hypothesis, SLRDR exploits features' local structural properties in feature space and explores the association between data and labels, allowing the model to learn richer and more accurate structural information. In addition, ℓ2,1/2-norm is imposed on the weight matrix to obtain a minimum-redundant solution and select more discriminative features. Finally, an alternating iterative method is used for SLRDR to solve the optimization problem of the objective function, and the convergence of the model is theoretically analyzed. Besides, a series of comparative experiments with ten existing algorithms on nine benchmark datasets are used to verify the model's effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
健康的犀牛完成签到,获得积分10
2秒前
桐桐应助gaoww采纳,获得10
2秒前
Bonobonoya发布了新的文献求助10
3秒前
xhh关注了科研通微信公众号
3秒前
搜集达人应助gdh采纳,获得10
5秒前
Meredith应助无悔的鱼儿采纳,获得20
6秒前
淡定硬币完成签到 ,获得积分10
7秒前
免疫方舟完成签到,获得积分10
9秒前
哇卡哇卡完成签到,获得积分10
14秒前
Re完成签到 ,获得积分10
14秒前
活力涔关注了科研通微信公众号
14秒前
15秒前
16秒前
感动毒娘发布了新的文献求助10
17秒前
苞大米发布了新的文献求助10
17秒前
sword完成签到,获得积分10
20秒前
锋锋完成签到,获得积分10
20秒前
najibveto发布了新的文献求助10
21秒前
完美世界应助TCMning采纳,获得10
23秒前
26秒前
橙子完成签到,获得积分10
28秒前
30秒前
那种完成签到,获得积分10
30秒前
wy完成签到,获得积分20
30秒前
rellik发布了新的文献求助10
30秒前
烟花应助芝麻球ii采纳,获得10
30秒前
31秒前
32秒前
gdh发布了新的文献求助10
32秒前
活力涔发布了新的文献求助30
32秒前
苞大米完成签到,获得积分10
32秒前
33秒前
34秒前
34秒前
英俊的铭应助小草采纳,获得10
35秒前
养乐多发布了新的文献求助10
36秒前
游a完成签到,获得积分10
38秒前
郝宝真发布了新的文献求助10
39秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera, Volume 3, Part 2 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165551
求助须知:如何正确求助?哪些是违规求助? 2816731
关于积分的说明 7913345
捐赠科研通 2476143
什么是DOI,文献DOI怎么找? 1318707
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388