生物传感器
拉曼散射
生物标志物
纳米技术
免疫分析
材料科学
计算机科学
拉曼光谱
化学
医学
光学
物理
生物化学
抗体
免疫学
作者
Xinyu Liu,Xiaoming Su,Mingyang Chen,Yangcenzi Xie,Ming Li
标识
DOI:10.1016/j.bios.2023.115840
摘要
Rapid early diagnosis of Alzheimer's disease (AD) is critical for its effective and prompt treatment since the clinically available treatments can only relieve the symptoms or slow the disease progression. However, it is still a grand challenge to accurately diagnose AD at its early stage because of the indiscernible early symptoms and the lack of sensitive detection tools. Here, we develop a self-calibrating surface-enhanced Raman scattering (SERS)-lateral flow immunoassay (LFIA) biosensor for quantitative analysis of amyloid-β1-42 (Aβ1-42) biomarker in biofluids, enabling accurate AD diagnosis. The designed SERS-LFIA biosensor makes full use of the unique aspects of the LFIA format and the SERS technique to quantify the Aβ1-42 level in complex biofluids with high sensitivity, excellent anti-interference capability, low-cost, and operation simplicity. The key aspect of the design of this biosensor is that internal standard (IS)-SERS nanoparticles are embedded in the test line of the test strip as a self-calibration unit for correction of fluctuations of SERS signals caused by various external factors such as test parameters and sample heterogeneity. We demonstrate significant improvement of the detection performance of the SERS-LFIA biosensor for ratiometric quantification of Aβ1-42 owing to the built-in IS in the test line. We expect that the present IS-based biosensing strategy provides a promising tool for accurate AD diagnosis and longitudinal monitoring of therapeutic response with great promises for clinical translation.
科研通智能强力驱动
Strongly Powered by AbleSci AI