Camouflaged Object Segmentation Based on Joint Salient Object for Contrastive Learning

分割 人工智能 计算机科学 对象(语法) 特征(语言学) 代表(政治) 模式识别(心理学) 目标检测 特征提取 特征学习 相似性(几何) 集合(抽象数据类型) 计算机视觉 图像(数学) 哲学 程序设计语言 法学 政治 语言学 政治学
作者
Xinhao Jiang,Wei Cai,Yao Ding,Xin Wang,Danfeng Hong,Zhiyong Yang,Weijie Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:16
标识
DOI:10.1109/tim.2023.3306520
摘要

In a broad sense, camouflaged objects generally refer to objects that have a high degree of similarity to the background. Therefore, camouflaged object segmentation (COS) is more challenging than traditional object segmentation. Current COS networks have high segmentation precision on datasets. However, the problems of object miss detection and false alarm still occur, mainly due to the different camouflage levels of the objects. In this paper, we propose a Joint Comparative Learning Network (JCNet) for camouflaged object segmentation based on joint salient object for contrastive learning to overcome the widespread challenges in COS. Specifically, the main innovation of JCNet is the Contrastive Network (CNet) design, which generates a unique feature representation of the camouflaged object different from others. In terms of details, we design an edge guidance module to enhance the edge extraction capability. Moreover, a global relationship capture module is proposed to improve the confidence level of the feature representation. Finally, we set positive and negative samples and loss functions in conjunction with sample types. We conducted comprehensive experiments using four COS datasets, and the results demonstrate its suitability for COS when compared with other state-of-the-art segmentation models. JCNet achieves optimal results on five evaluation metrics, including an average improvement of 1.93% and 2.7% on Fm and F ω m , respectively. In summary, it has lower miss and false alarm rates, and better generalization in the COS task. In addition, the experiments demonstrate that JCNet also has strong segmentation capability in salient object segmentation, achieving a win-win situation for both tasks. The code will be available at https://github.com/jiangxinhao2020/JCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助morry5007采纳,获得10
1秒前
幸福的蓝血完成签到,获得积分10
2秒前
香蕉觅云应助cxl采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
6666发布了新的文献求助10
4秒前
Stella完成签到,获得积分0
4秒前
充电宝应助zpctx采纳,获得10
4秒前
灯灯发布了新的文献求助10
5秒前
秋天的雪发布了新的文献求助10
5秒前
syqlyd完成签到 ,获得积分10
6秒前
科研通AI2S应助zzznznnn采纳,获得10
7秒前
slm完成签到,获得积分10
7秒前
自觉士萧发布了新的文献求助10
8秒前
如意蓉完成签到,获得积分10
9秒前
10秒前
好运6连发布了新的文献求助10
10秒前
10秒前
11秒前
Cathy17sl完成签到,获得积分10
11秒前
zpctx完成签到,获得积分10
12秒前
大模型应助自觉士萧采纳,获得10
12秒前
陈新发布了新的文献求助10
14秒前
FashionBoy应助刘凯采纳,获得10
14秒前
幸福白安完成签到,获得积分20
14秒前
舒适砖家发布了新的文献求助10
14秒前
111发布了新的文献求助10
15秒前
fairy完成签到 ,获得积分10
15秒前
俊逸成危完成签到,获得积分10
15秒前
WNL发布了新的文献求助30
16秒前
zpctx发布了新的文献求助10
16秒前
陶嘉云完成签到,获得积分10
16秒前
17秒前
123by发布了新的文献求助10
18秒前
19秒前
今后应助孤星采纳,获得10
20秒前
清颜发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608203
求助须知:如何正确求助?哪些是违规求助? 4692781
关于积分的说明 14875613
捐赠科研通 4716881
什么是DOI,文献DOI怎么找? 2544093
邀请新用户注册赠送积分活动 1509086
关于科研通互助平台的介绍 1472795