亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Camouflaged Object Segmentation Based on Joint Salient Object for Contrastive Learning

分割 人工智能 计算机科学 对象(语法) 特征(语言学) 代表(政治) 模式识别(心理学) 目标检测 特征提取 特征学习 相似性(几何) 集合(抽象数据类型) 计算机视觉 图像(数学) 哲学 语言学 政治 政治学 法学 程序设计语言
作者
Xinhao Jiang,Wei Cai,Yao Ding,Xin Wang,Danfeng Hong,Zhiyong Yang,Weijie Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:16
标识
DOI:10.1109/tim.2023.3306520
摘要

In a broad sense, camouflaged objects generally refer to objects that have a high degree of similarity to the background. Therefore, camouflaged object segmentation (COS) is more challenging than traditional object segmentation. Current COS networks have high segmentation precision on datasets. However, the problems of object miss detection and false alarm still occur, mainly due to the different camouflage levels of the objects. In this paper, we propose a Joint Comparative Learning Network (JCNet) for camouflaged object segmentation based on joint salient object for contrastive learning to overcome the widespread challenges in COS. Specifically, the main innovation of JCNet is the Contrastive Network (CNet) design, which generates a unique feature representation of the camouflaged object different from others. In terms of details, we design an edge guidance module to enhance the edge extraction capability. Moreover, a global relationship capture module is proposed to improve the confidence level of the feature representation. Finally, we set positive and negative samples and loss functions in conjunction with sample types. We conducted comprehensive experiments using four COS datasets, and the results demonstrate its suitability for COS when compared with other state-of-the-art segmentation models. JCNet achieves optimal results on five evaluation metrics, including an average improvement of 1.93% and 2.7% on Fm and F ω m , respectively. In summary, it has lower miss and false alarm rates, and better generalization in the COS task. In addition, the experiments demonstrate that JCNet also has strong segmentation capability in salient object segmentation, achieving a win-win situation for both tasks. The code will be available at https://github.com/jiangxinhao2020/JCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nick_YFWS完成签到,获得积分10
刚刚
张张发布了新的文献求助10
1秒前
LLL完成签到 ,获得积分10
1秒前
菲比完成签到,获得积分10
3秒前
25486完成签到,获得积分10
3秒前
黄黄黄发布了新的文献求助10
4秒前
请输入昵称完成签到 ,获得积分10
5秒前
涵涵涵hh完成签到 ,获得积分10
5秒前
6秒前
clio完成签到,获得积分10
7秒前
8秒前
Boffican发布了新的文献求助10
11秒前
11秒前
坚守发布了新的文献求助10
12秒前
14秒前
啊哦发布了新的文献求助30
15秒前
16秒前
zhdhh发布了新的文献求助10
16秒前
D1fficulty完成签到,获得积分0
17秒前
iCorn完成签到,获得积分10
17秒前
影月完成签到,获得积分10
18秒前
Freedom完成签到 ,获得积分10
19秒前
20秒前
20秒前
黄黄黄完成签到 ,获得积分20
26秒前
乐观的非笑完成签到,获得积分10
30秒前
34秒前
34秒前
乐乐应助坚守采纳,获得10
35秒前
科研通AI6应助zhdhh采纳,获得10
36秒前
信陵君无忌完成签到,获得积分10
36秒前
li发布了新的文献求助10
39秒前
领导范儿应助哦噢藕采纳,获得10
41秒前
樱桃汽水怪兽完成签到,获得积分10
42秒前
li完成签到,获得积分10
45秒前
张张完成签到,获得积分10
45秒前
49秒前
哦噢藕完成签到,获得积分10
51秒前
53秒前
明理的蜗牛完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639422
求助须知:如何正确求助?哪些是违规求助? 4748203
关于积分的说明 15006376
捐赠科研通 4797589
什么是DOI,文献DOI怎么找? 2563600
邀请新用户注册赠送积分活动 1522598
关于科研通互助平台的介绍 1482264