Camouflaged Object Segmentation Based on Joint Salient Object for Contrastive Learning

分割 人工智能 计算机科学 对象(语法) 特征(语言学) 代表(政治) 模式识别(心理学) 目标检测 特征提取 特征学习 相似性(几何) 集合(抽象数据类型) 计算机视觉 图像(数学) 哲学 程序设计语言 法学 政治 语言学 政治学
作者
Xinhao Jiang,Wei Cai,Yao Ding,Xin Wang,Danfeng Hong,Zhiyong Yang,Weijie Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:10
标识
DOI:10.1109/tim.2023.3306520
摘要

In a broad sense, camouflaged objects generally refer to objects that have a high degree of similarity to the background. Therefore, camouflaged object segmentation (COS) is more challenging than traditional object segmentation. Current COS networks have high segmentation precision on datasets. However, the problems of object miss detection and false alarm still occur, mainly due to the different camouflage levels of the objects. In this paper, we propose a Joint Comparative Learning Network (JCNet) for camouflaged object segmentation based on joint salient object for contrastive learning to overcome the widespread challenges in COS. Specifically, the main innovation of JCNet is the Contrastive Network (CNet) design, which generates a unique feature representation of the camouflaged object different from others. In terms of details, we design an edge guidance module to enhance the edge extraction capability. Moreover, a global relationship capture module is proposed to improve the confidence level of the feature representation. Finally, we set positive and negative samples and loss functions in conjunction with sample types. We conducted comprehensive experiments using four COS datasets, and the results demonstrate its suitability for COS when compared with other state-of-the-art segmentation models. JCNet achieves optimal results on five evaluation metrics, including an average improvement of 1.93% and 2.7% on Fm and F ω m , respectively. In summary, it has lower miss and false alarm rates, and better generalization in the COS task. In addition, the experiments demonstrate that JCNet also has strong segmentation capability in salient object segmentation, achieving a win-win situation for both tasks. The code will be available at https://github.com/jiangxinhao2020/JCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风清扬应助jiajia采纳,获得10
2秒前
随风完成签到,获得积分10
2秒前
Phi.Wang发布了新的文献求助10
2秒前
jctyp完成签到,获得积分10
3秒前
洁净斑马发布了新的文献求助10
3秒前
Jin完成签到,获得积分10
3秒前
9℃完成签到 ,获得积分10
4秒前
hansa完成签到,获得积分10
5秒前
Dan完成签到 ,获得积分10
6秒前
缥缈的背包完成签到,获得积分10
6秒前
沉甸甸完成签到,获得积分10
8秒前
火之高兴完成签到 ,获得积分10
8秒前
John完成签到 ,获得积分10
9秒前
DCOI完成签到 ,获得积分10
10秒前
gzf完成签到 ,获得积分10
12秒前
12秒前
杨杰超完成签到,获得积分10
12秒前
江十三完成签到,获得积分10
14秒前
223311完成签到,获得积分10
14秒前
16秒前
俭朴的发带完成签到,获得积分10
16秒前
17秒前
36456657应助RRR971028采纳,获得10
18秒前
哈哈哈完成签到,获得积分10
18秒前
细心天德完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
19秒前
呼呼呼完成签到,获得积分10
21秒前
wangbw完成签到,获得积分10
22秒前
芒芒发paper完成签到 ,获得积分10
23秒前
愉快的真应助快乐小子采纳,获得20
25秒前
NexusExplorer应助miaomiao采纳,获得100
26秒前
27秒前
兴奋的若菱完成签到 ,获得积分10
27秒前
Gavin完成签到,获得积分10
28秒前
Legend_完成签到 ,获得积分10
29秒前
SYLH应助Lee采纳,获得10
29秒前
知性的颜完成签到 ,获得积分10
29秒前
一只橙子完成签到,获得积分10
30秒前
成成成岩浆完成签到 ,获得积分10
30秒前
drdrde4u完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015708
求助须知:如何正确求助?哪些是违规求助? 3555661
关于积分的说明 11318291
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027