Camouflaged Object Segmentation Based on Joint Salient Object for Contrastive Learning

分割 人工智能 计算机科学 对象(语法) 特征(语言学) 代表(政治) 模式识别(心理学) 目标检测 特征提取 特征学习 相似性(几何) 集合(抽象数据类型) 计算机视觉 图像(数学) 哲学 语言学 政治 政治学 法学 程序设计语言
作者
Xinhao Jiang,Wei Cai,Yao Ding,Xin Wang,Danfeng Hong,Zhiyong Yang,Weijie Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:16
标识
DOI:10.1109/tim.2023.3306520
摘要

In a broad sense, camouflaged objects generally refer to objects that have a high degree of similarity to the background. Therefore, camouflaged object segmentation (COS) is more challenging than traditional object segmentation. Current COS networks have high segmentation precision on datasets. However, the problems of object miss detection and false alarm still occur, mainly due to the different camouflage levels of the objects. In this paper, we propose a Joint Comparative Learning Network (JCNet) for camouflaged object segmentation based on joint salient object for contrastive learning to overcome the widespread challenges in COS. Specifically, the main innovation of JCNet is the Contrastive Network (CNet) design, which generates a unique feature representation of the camouflaged object different from others. In terms of details, we design an edge guidance module to enhance the edge extraction capability. Moreover, a global relationship capture module is proposed to improve the confidence level of the feature representation. Finally, we set positive and negative samples and loss functions in conjunction with sample types. We conducted comprehensive experiments using four COS datasets, and the results demonstrate its suitability for COS when compared with other state-of-the-art segmentation models. JCNet achieves optimal results on five evaluation metrics, including an average improvement of 1.93% and 2.7% on Fm and F ω m , respectively. In summary, it has lower miss and false alarm rates, and better generalization in the COS task. In addition, the experiments demonstrate that JCNet also has strong segmentation capability in salient object segmentation, achieving a win-win situation for both tasks. The code will be available at https://github.com/jiangxinhao2020/JCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钱钱完成签到,获得积分10
刚刚
刚刚
大方雪糕发布了新的文献求助10
刚刚
投石问路完成签到,获得积分10
刚刚
Hanoi347应助jingjintian采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
芮rich完成签到,获得积分10
1秒前
MZ完成签到,获得积分0
1秒前
一言一木完成签到,获得积分10
1秒前
我是老大应助洋葱采纳,获得10
1秒前
瑾辰发布了新的文献求助10
2秒前
2秒前
阿卡林完成签到,获得积分10
2秒前
daaqiu发布了新的文献求助10
2秒前
2秒前
2秒前
tt发布了新的文献求助10
2秒前
科研通AI6应助yy采纳,获得10
3秒前
Jasper应助梨膏糖采纳,获得10
3秒前
mayonnaise完成签到,获得积分10
3秒前
4秒前
所所应助正正采纳,获得10
4秒前
lenne完成签到,获得积分10
4秒前
4秒前
4秒前
qing完成签到,获得积分10
4秒前
5秒前
5秒前
专注乐荷完成签到,获得积分10
5秒前
蒋j发布了新的文献求助10
5秒前
0℃冰封完成签到,获得积分10
6秒前
6秒前
洛洛洛完成签到,获得积分10
7秒前
8秒前
8秒前
yy完成签到,获得积分10
8秒前
10秒前
大树应助孔乙己采纳,获得10
10秒前
10秒前
daaqiu完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652169
求助须知:如何正确求助?哪些是违规求助? 4786896
关于积分的说明 15058821
捐赠科研通 4810805
什么是DOI,文献DOI怎么找? 2573410
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488184