Camouflaged Object Segmentation Based on Joint Salient Object for Contrastive Learning

分割 人工智能 计算机科学 对象(语法) 特征(语言学) 代表(政治) 模式识别(心理学) 目标检测 特征提取 特征学习 相似性(几何) 集合(抽象数据类型) 计算机视觉 图像(数学) 哲学 程序设计语言 法学 政治 语言学 政治学
作者
Xinhao Jiang,Wei Cai,Yao Ding,Xin Wang,Danfeng Hong,Zhiyong Yang,Weijie Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-16 被引量:16
标识
DOI:10.1109/tim.2023.3306520
摘要

In a broad sense, camouflaged objects generally refer to objects that have a high degree of similarity to the background. Therefore, camouflaged object segmentation (COS) is more challenging than traditional object segmentation. Current COS networks have high segmentation precision on datasets. However, the problems of object miss detection and false alarm still occur, mainly due to the different camouflage levels of the objects. In this paper, we propose a Joint Comparative Learning Network (JCNet) for camouflaged object segmentation based on joint salient object for contrastive learning to overcome the widespread challenges in COS. Specifically, the main innovation of JCNet is the Contrastive Network (CNet) design, which generates a unique feature representation of the camouflaged object different from others. In terms of details, we design an edge guidance module to enhance the edge extraction capability. Moreover, a global relationship capture module is proposed to improve the confidence level of the feature representation. Finally, we set positive and negative samples and loss functions in conjunction with sample types. We conducted comprehensive experiments using four COS datasets, and the results demonstrate its suitability for COS when compared with other state-of-the-art segmentation models. JCNet achieves optimal results on five evaluation metrics, including an average improvement of 1.93% and 2.7% on Fm and F ω m , respectively. In summary, it has lower miss and false alarm rates, and better generalization in the COS task. In addition, the experiments demonstrate that JCNet also has strong segmentation capability in salient object segmentation, achieving a win-win situation for both tasks. The code will be available at https://github.com/jiangxinhao2020/JCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你好发布了新的文献求助10
刚刚
赘婿应助泡泡茶壶采纳,获得10
刚刚
1秒前
幸福的蜜粉完成签到,获得积分10
1秒前
1秒前
刘星星完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
科研人完成签到,获得积分10
4秒前
Maria发布了新的文献求助10
4秒前
小小丫发布了新的文献求助10
5秒前
5秒前
爬起来学习应助辣辣采纳,获得10
7秒前
volcano发布了新的文献求助20
7秒前
蜀安应助烂漫的初蓝采纳,获得200
8秒前
Maisie发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
可颂完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
李爱国应助lin采纳,获得50
14秒前
hui完成签到,获得积分10
16秒前
16秒前
16秒前
hao完成签到,获得积分10
17秒前
桐桐应助欣喜战斗机采纳,获得10
17秒前
17秒前
ulung完成签到 ,获得积分10
18秒前
Rming发布了新的文献求助10
18秒前
19秒前
123by发布了新的文献求助10
19秒前
埋头赶路完成签到,获得积分10
19秒前
Lynn_L完成签到,获得积分20
19秒前
whw发布了新的文献求助20
20秒前
guo完成签到,获得积分10
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750176
求助须知:如何正确求助?哪些是违规求助? 5462457
关于积分的说明 15365731
捐赠科研通 4889341
什么是DOI,文献DOI怎么找? 2629077
邀请新用户注册赠送积分活动 1577365
关于科研通互助平台的介绍 1533966