数学
猜想
特征向量
拉普拉斯算子
组合数学
拉普拉斯矩阵
图形
订单(交换)
代数连通性
上下界
分布(数学)
谱图论
离散数学
纯数学
数学分析
折线图
图形功率
物理
财务
量子力学
经济
标识
DOI:10.1016/j.laa.2023.08.013
摘要
Ahanjideh, Akbari, Fakharan and Trevisan proposed a conjecture on the distribution of the Laplacian eigenvalues of graphs: for any connected graph of order n with diameter d≥2 that is not a path, the number of Laplacian eigenvalues in the interval [n−d+2,n] is at most n−d. We show that the conjecture is true, and give a complete characterization of graphs for which the conjectured bound is attained. This establishes an interesting relation between the spectral and classical parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI