Germanium surface cleaning and ALD of a protective boron nitride overlayer

覆盖层 X射线光电子能谱 材料科学 原子层沉积 钝化 化学工程 氧化锗 图层(电子) 化学气相沉积 分析化学(期刊) 纳米技术 化学 冶金 物理化学 有机化学 工程类
作者
Olatomide Omolere,Qasim Adesope,Samar Alhowity,Tochi L. Agbara,Jeffry A. Kelber
出处
期刊:Journal of vacuum science & technology [American Vacuum Society]
卷期号:41 (6)
标识
DOI:10.1116/6.0002928
摘要

Germanium exhibits superior hole and electron mobility compared with silicon, making it a promising candidate for replacement of silicon in certain future CMOS applications. In such applications, achieving atomically clean Ge surfaces and the subsequent deposition of ultrathin passivation barriers without interfacial reaction are critical. In this study, we present in situ x-ray photoelectron spectroscopy (XPS) investigations of hydrocarbon removal from the Ge surface utilizing atomic oxygen at room temperature, as well as removal of hydrocarbons and of germanium oxide (GeO2) through atomic hydrogen treatment at 350 °C. Subsequently, atomic layer deposition (ALD) was used to create a protective layer of hexagonal boron nitride (h-BN) with an average thickness of 3 monolayers (ML). Tris(dimethylamino)borane and ammonia precursors were utilized at 450 °C for the deposition process. Intermittent in situ XPS analysis during ALD confirmed h-BN growth, stoichiometry, and the absence of interfacial reaction with Ge. XPS analysis after subsequent exposure of the Ge film with a h-BN overlayer of ∼9 Å average thickness to 7.2 × 104 l of atomic O (O3P) at room temperature yielded no evidence of Ge oxidation, with only the surface layer of the h-BN film exhibiting oxidation. These results present a practical and scalable route toward the preparation of clean Ge surfaces and subsequent deposition of protective, nanothin h-BN barriers for subsequent processing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
拼搏思卉发布了新的文献求助10
刚刚
1秒前
雨碎寒江完成签到,获得积分10
1秒前
2秒前
会飞的木头完成签到,获得积分10
2秒前
雪白涵山发布了新的文献求助20
2秒前
shouyu29应助MADKAI采纳,获得10
2秒前
Seiswan发布了新的文献求助10
2秒前
小小菜鸟完成签到,获得积分10
3秒前
3秒前
西西弗斯完成签到,获得积分10
3秒前
KT2440完成签到,获得积分10
4秒前
顾阿秀发布了新的文献求助10
4秒前
4秒前
4秒前
gnr2000完成签到,获得积分0
4秒前
5秒前
5秒前
BareBear应助赖道之采纳,获得10
5秒前
LEMON完成签到,获得积分10
5秒前
Ava应助buuyoo采纳,获得10
6秒前
情怀应助liuwei采纳,获得10
6秒前
aaefv完成签到,获得积分10
6秒前
小小菜鸟发布了新的文献求助10
6秒前
深情安青应助123采纳,获得10
6秒前
赫初晴完成签到 ,获得积分10
6秒前
平淡的亦丝应助明研采纳,获得20
6秒前
8秒前
库外发布了新的文献求助10
9秒前
汉堡包应助清新的冷松采纳,获得10
9秒前
从心应助LiShin采纳,获得10
9秒前
帅气的听莲完成签到,获得积分10
9秒前
英姑应助Areslcy采纳,获得10
9秒前
善学以致用应助zxz采纳,获得10
10秒前
whatever应助luoshi采纳,获得10
11秒前
11秒前
科研通AI5应助徐徐采纳,获得10
12秒前
shouyu29应助MADKAI采纳,获得10
12秒前
shouyu29应助MADKAI采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762