Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends

探地雷达 鉴定(生物学) 雷达 人工智能 苦恼 计算机科学 基本事实 机器学习 电信 植物 生物 生态学
作者
Chenglong Liu,Yuchuan Du,Guanghua Yue,Yishun Li,Difei Wu,Feng Li
出处
期刊:Automation in Construction [Elsevier]
卷期号:158: 105185-105185 被引量:5
标识
DOI:10.1016/j.autcon.2023.105185
摘要

Affected by soil erosion and material deterioration, road subsurface is prone to distress such as cavities, water-rich, and cracks. Ground penetrating radar (GPR), as a real-time geophysical survey method that uses electromagnetic radiation to image the subsurface, offers promising non-destructive solutions to road subsurface health monitoring. However, the interpretation of GPR signals is non-intuitive and obscure in terms of distress identification, whose performance is also limited by the heterogeneous road condition. In conjunction with knowledge diagram analysis, a state-of-the-art review is applied to summarize the advances in the automatic identification of road subsurface distress (RSD). The algorithms based on the single-channel waveform (A-scan), two-dimensional profile (B-scan), and three-dimensional data (C-scan) are elaborated from the perspectives of rule-based recognition algorithm, machine learning algorithm, and deep learning algorithm. In comparison to analytical methods, the emerging deep learning models have a powerful ability to extract complex features from multi-dimensional GPR radargrams, enhancing the efficiency and accuracy of road subsurface distress detection. Recommendations for model selection are compiled from existing literature together with empirical evidence. The most significant variables that influence the model selections are thought to be the type of identified RSD, training sample quality and quantity, prior knowledge, and computational cost. Some challenges, such as insufficient training samples and diverse road structures, are presented. Future trends are concluded to draw the implications for GPR research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信号厂完成签到 ,获得积分10
刚刚
小蘑菇应助ccc采纳,获得10
1秒前
shuo完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
aich完成签到,获得积分10
2秒前
上官若男应助YE采纳,获得10
3秒前
Jasper应助YaoX采纳,获得10
3秒前
天天快乐应助威武绿真采纳,获得10
3秒前
MADKAI发布了新的文献求助10
3秒前
4秒前
慕青应助April采纳,获得10
4秒前
123完成签到,获得积分10
4秒前
Xu发布了新的文献求助10
4秒前
manan发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
张张完成签到,获得积分10
5秒前
Dream发布了新的文献求助30
5秒前
5秒前
henry完成签到,获得积分10
6秒前
雾蓝发布了新的文献求助10
6秒前
桃子发布了新的文献求助10
6秒前
烟花应助刘星星采纳,获得10
7秒前
一只鱼完成签到,获得积分10
7秒前
YY发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
qianmo完成签到 ,获得积分10
7秒前
jennifercui发布了新的文献求助10
8秒前
rh1006完成签到,获得积分10
8秒前
mrjohn发布了新的文献求助10
8秒前
8秒前
YE完成签到 ,获得积分20
10秒前
李繁蕊发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740