Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends

探地雷达 鉴定(生物学) 雷达 人工智能 苦恼 计算机科学 基本事实 机器学习 生态学 植物 电信 生物
作者
Chenglong Liu,Yuchuan Du,Guanghua Yue,Yishun Li,Difei Wu,Feng Li
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:158: 105185-105185 被引量:5
标识
DOI:10.1016/j.autcon.2023.105185
摘要

Affected by soil erosion and material deterioration, road subsurface is prone to distress such as cavities, water-rich, and cracks. Ground penetrating radar (GPR), as a real-time geophysical survey method that uses electromagnetic radiation to image the subsurface, offers promising non-destructive solutions to road subsurface health monitoring. However, the interpretation of GPR signals is non-intuitive and obscure in terms of distress identification, whose performance is also limited by the heterogeneous road condition. In conjunction with knowledge diagram analysis, a state-of-the-art review is applied to summarize the advances in the automatic identification of road subsurface distress (RSD). The algorithms based on the single-channel waveform (A-scan), two-dimensional profile (B-scan), and three-dimensional data (C-scan) are elaborated from the perspectives of rule-based recognition algorithm, machine learning algorithm, and deep learning algorithm. In comparison to analytical methods, the emerging deep learning models have a powerful ability to extract complex features from multi-dimensional GPR radargrams, enhancing the efficiency and accuracy of road subsurface distress detection. Recommendations for model selection are compiled from existing literature together with empirical evidence. The most significant variables that influence the model selections are thought to be the type of identified RSD, training sample quality and quantity, prior knowledge, and computational cost. Some challenges, such as insufficient training samples and diverse road structures, are presented. Future trends are concluded to draw the implications for GPR research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
雪城完成签到,获得积分10
刚刚
鸭子完成签到,获得积分10
1秒前
其11完成签到,获得积分20
1秒前
Donson_Li完成签到,获得积分10
1秒前
1秒前
科研通AI5应助zhn0607采纳,获得10
2秒前
sunny完成签到,获得积分10
2秒前
cyndi发布了新的文献求助10
3秒前
3秒前
荼白完成签到 ,获得积分10
3秒前
3秒前
韦远侵完成签到,获得积分10
3秒前
ala完成签到,获得积分10
4秒前
啾啾完成签到 ,获得积分10
4秒前
鸭子发布了新的文献求助10
4秒前
大大大骁完成签到,获得积分20
5秒前
wwc完成签到,获得积分10
5秒前
李小雨发布了新的文献求助10
5秒前
今后应助风清扬采纳,获得10
8秒前
白云发布了新的文献求助10
8秒前
浮游应助白白白采纳,获得10
8秒前
搜集达人应助Qiangjianjie采纳,获得10
8秒前
科目三应助南乔采纳,获得10
9秒前
悦耳亦云完成签到 ,获得积分10
9秒前
九湖夷上完成签到,获得积分10
10秒前
科研通AI6应助小陶采纳,获得10
10秒前
刘凯蕊完成签到 ,获得积分10
10秒前
胖胖胖胖完成签到,获得积分10
10秒前
莫三颜完成签到 ,获得积分10
11秒前
清风细雨完成签到 ,获得积分10
11秒前
Ray完成签到,获得积分10
11秒前
123456789完成签到,获得积分10
11秒前
pp完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
调皮曼冬完成签到,获得积分10
15秒前
15秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212962
求助须知:如何正确求助?哪些是违规求助? 4388957
关于积分的说明 13665312
捐赠科研通 4249723
什么是DOI,文献DOI怎么找? 2331751
邀请新用户注册赠送积分活动 1329470
关于科研通互助平台的介绍 1282998