Advances in automatic identification of road subsurface distress using ground penetrating radar: State of the art and future trends

探地雷达 鉴定(生物学) 雷达 人工智能 苦恼 计算机科学 基本事实 机器学习 生态学 植物 电信 生物
作者
Chenglong Liu,Yuchuan Du,Guanghua Yue,Yishun Li,Difei Wu,Feng Li
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:158: 105185-105185 被引量:5
标识
DOI:10.1016/j.autcon.2023.105185
摘要

Affected by soil erosion and material deterioration, road subsurface is prone to distress such as cavities, water-rich, and cracks. Ground penetrating radar (GPR), as a real-time geophysical survey method that uses electromagnetic radiation to image the subsurface, offers promising non-destructive solutions to road subsurface health monitoring. However, the interpretation of GPR signals is non-intuitive and obscure in terms of distress identification, whose performance is also limited by the heterogeneous road condition. In conjunction with knowledge diagram analysis, a state-of-the-art review is applied to summarize the advances in the automatic identification of road subsurface distress (RSD). The algorithms based on the single-channel waveform (A-scan), two-dimensional profile (B-scan), and three-dimensional data (C-scan) are elaborated from the perspectives of rule-based recognition algorithm, machine learning algorithm, and deep learning algorithm. In comparison to analytical methods, the emerging deep learning models have a powerful ability to extract complex features from multi-dimensional GPR radargrams, enhancing the efficiency and accuracy of road subsurface distress detection. Recommendations for model selection are compiled from existing literature together with empirical evidence. The most significant variables that influence the model selections are thought to be the type of identified RSD, training sample quality and quantity, prior knowledge, and computational cost. Some challenges, such as insufficient training samples and diverse road structures, are presented. Future trends are concluded to draw the implications for GPR research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
光亮的思天完成签到,获得积分10
2秒前
Su发布了新的文献求助10
2秒前
阿木木完成签到,获得积分10
2秒前
光年发布了新的文献求助10
3秒前
Yingwen发布了新的文献求助10
3秒前
安心完成签到,获得积分10
3秒前
满城烟沙完成签到 ,获得积分0
4秒前
咖可乐完成签到,获得积分10
4秒前
hkh发布了新的文献求助10
4秒前
4秒前
科目三应助33采纳,获得10
4秒前
5秒前
fixit完成签到,获得积分10
5秒前
keeee完成签到 ,获得积分10
5秒前
5秒前
6秒前
Riggle G发布了新的文献求助10
7秒前
7秒前
姜惠发布了新的文献求助10
8秒前
9秒前
魁梧的火龙果完成签到,获得积分10
9秒前
九九完成签到 ,获得积分10
9秒前
啦啦咔嘞完成签到,获得积分10
9秒前
会科研发布了新的文献求助10
10秒前
10秒前
灯塔水母发布了新的文献求助10
11秒前
11秒前
Yeyuntian完成签到 ,获得积分10
11秒前
wangxiaoyating完成签到,获得积分10
11秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
12秒前
slin_sjtu完成签到,获得积分10
12秒前
小小小肥鸡完成签到,获得积分10
12秒前
Wuxia111发布了新的文献求助10
13秒前
13秒前
谢昱完成签到,获得积分10
14秒前
14秒前
wgg完成签到,获得积分10
14秒前
潇洒完成签到,获得积分10
15秒前
白菜完成签到,获得积分10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051