CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography

狭窄 数字减影血管造影 颈动脉 放射科 减法 血管造影 医学 计算机科学 计算机视觉 心脏病学 数学 算术
作者
Aziguli Wulamu,Jichang Luo,Saian Chen,Han Zheng,Tao Wang,Renjie Yang,Liqun Jiao,Taohong Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:243: 107871-107871 被引量:1
标识
DOI:10.1016/j.cmpb.2023.107871
摘要

Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis. Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis. Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree. Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ecnuZhao发布了新的文献求助10
1秒前
2秒前
123完成签到,获得积分10
2秒前
3秒前
阳光盼山完成签到,获得积分10
4秒前
阿宇发布了新的文献求助10
7秒前
吃糖完成签到 ,获得积分10
7秒前
科研渣子发布了新的文献求助10
9秒前
传奇3应助Jie采纳,获得10
9秒前
酷波er应助jify采纳,获得10
9秒前
13秒前
14秒前
16秒前
元元369发布了新的文献求助10
18秒前
ecnuZhao完成签到,获得积分10
23秒前
Joyj99完成签到,获得积分10
23秒前
24秒前
敏感笑槐完成签到 ,获得积分10
25秒前
26秒前
amber完成签到 ,获得积分10
26秒前
所所应助阿宇采纳,获得10
27秒前
竹筏过海应助jason0023采纳,获得30
28秒前
李麟发布了新的文献求助10
32秒前
32秒前
开朗穆应助雅俗共赏采纳,获得10
34秒前
35秒前
迷人秋烟应助玲ling采纳,获得200
35秒前
唐尔曼完成签到,获得积分10
35秒前
李健应助等待凝海采纳,获得10
37秒前
39秒前
NexusExplorer应助xxxxxxx采纳,获得10
39秒前
科研通AI5应助李麟采纳,获得10
39秒前
钮祜禄萱发布了新的文献求助10
40秒前
威武的依风完成签到,获得积分10
40秒前
烟花应助lilinuusss采纳,获得10
42秒前
46秒前
47秒前
暗栀完成签到 ,获得积分10
47秒前
今后应助Isi采纳,获得10
49秒前
49秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673503
求助须知:如何正确求助?哪些是违规求助? 3229132
关于积分的说明 9784224
捐赠科研通 2939724
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760873
科研通“疑难数据库(出版商)”最低求助积分说明 736296