清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Use of Artificial Intelligence in Lung Cancer Management

肺癌 人工智能 无线电技术 深度学习 肺癌筛查 癌症 医学 机器学习 医学影像学 精密医学 医学物理学 计算机科学 肿瘤科 病理 内科学
作者
Pranali Santhoshini Pachika,Srijan Valasapalli,Phuong Ngo,Goetz Kloecker
标识
DOI:10.1089/aipo.2023.0002
摘要

Lung cancer is the leading cause of cancer-related mortality for both men and women, and it is one of the malignancies for which treatment is highly individualized. In all stages of lung cancer, including screening, diagnosis, therapy selection, prognosis, and surveillance, artificial intelligence (AI) components such as machine learning and deep learning can be applied. Radiomics (quantitative mathematical analysis of images) uses data-characterization algorithms to extract many diagnostic details from medical images. Numerous AI-driven radiomic models have been developed to differentiate benign from malignant lung nodules. New deep learning AI modules such as Sybil are even able to detect the future cancer risk based on a low-dose computed tomography. Numerous prediction models based on AI have been used to estimate the response to targeted therapy and immunotherapy. Al can also be used for active surveillance, and models for predicting the high-risk characteristics of recurrence have been developed. Some of the deep learning modules can detect the presence of molecular alterations and tumor histology based on tumor images. AI can be used in the field of genomics to discover new biomarkers that can help in prognostication as well as the development of new targeted therapies. Although AI can be used at every stage of lung cancer treatment, from diagnosis to survivorship, its lack of standardization is its greatest drawback. The intent of this review article is to provide a comprehensive overview of AI as regards the rapidly evolving field of lung cancer, encompassing all stages from screening to treatment, to highlight the latest advancements and their potential to revolutionize the management of lung cancer. We discuss the various AI models that are being utilized for lung cancer, as well as the potential future advancements. In addition, we highlight a few of the challenges associated with using these models in daily practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuchaoqun完成签到 ,获得积分10
2秒前
21秒前
511完成签到 ,获得积分10
40秒前
John完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
KKK完成签到,获得积分10
3分钟前
FashionBoy应助KKK采纳,获得10
4分钟前
4分钟前
KKK发布了新的文献求助10
4分钟前
Billy应助KKK采纳,获得10
5分钟前
灵巧白安完成签到 ,获得积分10
7分钟前
ZhiyunXu2012完成签到 ,获得积分10
7分钟前
纯纯纯纯完成签到,获得积分10
8分钟前
yichun完成签到,获得积分10
8分钟前
和谐小南完成签到,获得积分10
9分钟前
未来可期完成签到,获得积分10
9分钟前
11分钟前
jeff发布了新的文献求助20
12分钟前
RRRabbit完成签到,获得积分10
13分钟前
随梦而飞应助RRRabbit采纳,获得10
13分钟前
寻道图强应助siriusgg采纳,获得30
13分钟前
Antonio完成签到 ,获得积分10
14分钟前
FMHChan完成签到,获得积分10
15分钟前
siriusgg完成签到,获得积分20
15分钟前
Yvon完成签到,获得积分10
16分钟前
Akim应助Yvon采纳,获得10
16分钟前
大气摩托完成签到,获得积分20
18分钟前
大气摩托发布了新的文献求助10
18分钟前
dolphin完成签到 ,获得积分0
19分钟前
jqliu发布了新的文献求助10
19分钟前
奈思完成签到 ,获得积分10
19分钟前
spark810应助科研通管家采纳,获得10
19分钟前
spark810应助科研通管家采纳,获得10
19分钟前
lixuebin完成签到 ,获得积分10
20分钟前
jqliu完成签到,获得积分10
20分钟前
20分钟前
小蘑菇应助科研通管家采纳,获得10
21分钟前
Yvon发布了新的文献求助10
21分钟前
超帅柚子完成签到 ,获得积分10
22分钟前
肆肆完成签到,获得积分10
24分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056622
求助须知:如何正确求助?哪些是违规求助? 2713084
关于积分的说明 7434592
捐赠科研通 2358176
什么是DOI,文献DOI怎么找? 1249304
科研通“疑难数据库(出版商)”最低求助积分说明 607027
版权声明 596227