A radiomics-based interpretable model to predict the pathological grade of pancreatic neuroendocrine tumors

医学 神经组阅片室 无线电技术 逻辑回归 神经内分泌肿瘤 接收机工作特性 可解释性 放射科 随机森林 介入放射学 回顾性队列研究 百分位 人工智能 内科学 数学 统计 计算机科学 神经学 精神科
作者
Jing‐Yuan Ye,Fang Peng,Zhenpeng Peng,Xi‐Tai Huang,Jinzhao Xie,Xiaoyu Yin
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:34 (3): 1994-2005 被引量:28
标识
DOI:10.1007/s00330-023-10186-1
摘要

Abstract Objectives To develop a computed tomography (CT) radiomics-based interpretable machine learning (ML) model to predict the pathological grade of pancreatic neuroendocrine tumors (pNETs) in a non-invasive manner. Methods Patients with pNETs who underwent contrast-enhanced abdominal CT between 2010 and 2022 were included in this retrospective study. Radiomics features were extracted, and five radiomics-based ML models, namely logistic regression (LR), random forest (RF), support vector machine (SVM), XGBoost, and GaussianNB, were developed. The performance of these models was evaluated using a time-independent testing set, and metrics such as sensitivity, specificity, accuracy, and the area under the receiver operating characteristic curve (AUC) were calculated. The accuracy of the radiomics model was compared to that of needle biopsy. The Shapley Additive Explanation (SHAP) tool and the correlation between radiomics and biological features were employed to explore the interpretability of the model. Results A total of 122 patients (mean age: 50 ± 14 years; 53 male) were included in the training set, whereas 100 patients (mean age: 48 ± 13 years; 50 male) were included in the testing set. The AUCs for LR, SVM, RF, XGBoost, and GaussianNB were 0.758, 0.742, 0.779, 0.744, and 0.745, respectively, with corresponding accuracies of 73.0%, 70.0%, 77.0%, 71.9%, and 72.9%. The SHAP tool identified two features of the venous phase as the most significant, which showed significant differences among the Ki-67 index or mitotic count subgroups ( p < 0.001). Conclusions An interpretable radiomics-based RF model can effectively differentiate between G1 and G2/3 of pNETs, demonstrating favorable interpretability. Clinical relevance statement The radiomics-based interpretable model developed in this study has significant clinical relevance as it offers a non-invasive method for assessing the pathological grade of pancreatic neuroendocrine tumors and holds promise as an important complementary tool to traditional tissue biopsy. Key Points • A radiomics-based interpretable model was developed to predict the pathological grade of pNETs and compared with preoperative needle biopsy in terms of accuracy. • The model, based on CT radiomics, demonstrated favorable interpretability. • The radiomics model holds potential as a valuable complementary technique to preoperative needle biopsy; however, it should not be considered a replacement for biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sudon完成签到 ,获得积分10
1秒前
1秒前
去追完成签到 ,获得积分10
3秒前
joybee完成签到,获得积分0
4秒前
搞怪泥猴桃完成签到,获得积分10
4秒前
稳重依云完成签到 ,获得积分10
6秒前
Wsyyy完成签到 ,获得积分10
6秒前
LC完成签到 ,获得积分10
7秒前
MXene应助神猪无敌采纳,获得20
7秒前
TIAOTIAO完成签到,获得积分10
8秒前
zhoujy完成签到,获得积分10
8秒前
再学三分钟完成签到 ,获得积分20
8秒前
未央完成签到,获得积分10
9秒前
ZHY完成签到,获得积分10
12秒前
sanwan发布了新的文献求助10
12秒前
JamesPei应助tyzsail采纳,获得10
12秒前
恋恋青葡萄完成签到,获得积分10
12秒前
陶醉怜容完成签到,获得积分10
12秒前
领导范儿应助搞怪泥猴桃采纳,获得10
12秒前
13秒前
晚风完成签到 ,获得积分10
13秒前
13秒前
科研通AI5应助半栀采纳,获得10
13秒前
pluto应助偷乐采纳,获得10
14秒前
再学三分钟关注了科研通微信公众号
14秒前
争气完成签到 ,获得积分10
16秒前
愈疏发布了新的文献求助10
17秒前
ceeray23应助十里长亭采纳,获得10
18秒前
afeifei完成签到,获得积分10
18秒前
18秒前
20秒前
moonlin完成签到 ,获得积分10
21秒前
everyone_woo完成签到,获得积分10
22秒前
22秒前
lhx完成签到,获得积分10
23秒前
ywjkeyantong完成签到,获得积分10
23秒前
鸭梨很大完成签到 ,获得积分10
24秒前
wangli完成签到,获得积分10
24秒前
坤坤完成签到,获得积分10
24秒前
半栀发布了新的文献求助10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703