表面改性
材料科学
尿素
化学工程
表面工程
金属
曲面(拓扑)
纳米技术
化学
有机化学
冶金
数学
几何学
工程类
作者
Ping Li,Wenqin Li,Yuqi Huang,Quhua Huang,Fengli Li,Shuanghong Tian
出处
期刊:Small
[Wiley]
日期:2023-08-13
卷期号:19 (49)
被引量:14
标识
DOI:10.1002/smll.202305585
摘要
Facilitating C─N bond cleavage and promoting *COO desorption are essential yet challenging in urea oxidation reactions (UORs). Herein a novel interfacial coordination assembly protocol is established to modify the Co-phytate coordination complex on the Ni-based metal-organic framework (MOF) nanosheet array (CC/Ni-BDC@Co-PA) toward boosted and sustained UOR electrocatalysis. Comprehensive experimental and theoretical investigations unveil that surface Co-PA modification over Ni-BDC can manipulate the electronic state of Ni sites, and in situ evolved charge-redistributed surface can promote urea adsorption and the subsequent C─N bond cleavage. Impressively, Co-PA functionalization can impart a negatively charged catalyst surface with improved aerophobicity, not only weakening *COO adsorption and promoting CO2 departure, but also repelling CO32- approaching to deactivate Ni species, eventually alleviating CO2 poisoning and enhancing operational durability. Beyond that, improved hydrophilic and aerophobic characteristics would also contribute to better mass transfer kinetics. Consequently, CC/Ni-BDC@Co-PA exhibits prominent UOR performance with an ultralow potential of 1.300 V versus RHE to attain 10 mA cm-2 , a small Tafel slope of 45 mV dec-1 , and strong durability, comparable to the best Ni-based electrocatalysts documented thus far. This work affords a novel paradigm to construct MOF-based materials for promoted and sustained UOR catalysis through elegant surface engineering based on a metal-PA complex.
科研通智能强力驱动
Strongly Powered by AbleSci AI