BUS‐BRA: A breast ultrasound dataset for assessing computer‐aided diagnosis systems

乳腺超声检查 计算机科学 乳房成像 计算机辅助诊断 计算机辅助设计 分割 双雷达 乳腺癌 人工智能 基本事实 医学物理学 乳腺摄影术 机器学习 数据挖掘 模式识别(心理学) 医学 癌症 工程制图 内科学 工程类
作者
Wilfrido Gómez‐Flores,Maria Julia Gregorio‐Calas,Wagner Coelho de Albuquerque Pereira
出处
期刊:Medical Physics [Wiley]
卷期号:51 (4): 3110-3123 被引量:5
标识
DOI:10.1002/mp.16812
摘要

Abstract Purpose Computer‐aided diagnosis (CAD) systems on breast ultrasound (BUS) aim to increase the efficiency and effectiveness of breast screening, helping specialists to detect and classify breast lesions. CAD system development requires a set of annotated images, including lesion segmentation, biopsy results to specify benign and malignant cases, and BI‐RADS categories to indicate the likelihood of malignancy. Besides, standardized partitions of training, validation, and test sets promote reproducibility and fair comparisons between different approaches. Thus, we present a publicly available BUS dataset whose novelty is the substantial increment of cases with the above‐mentioned annotations and the inclusion of standardized partitions to objectively assess and compare CAD systems. Acquisition and Validation Methods The BUS dataset comprises 1875 anonymized images from 1064 female patients acquired via four ultrasound scanners during systematic studies at the National Institute of Cancer (Rio de Janeiro, Brazil). The dataset includes biopsy‐proven tumors divided into 722 benign and 342 malignant cases. Besides, a senior ultrasonographer performed a BI‐RADS assessment in categories 2 to 5. Additionally, the ultrasonographer manually outlined the breast lesions to obtain ground truth segmentations. Furthermore, 5‐ and 10‐fold cross‐validation partitions are provided to standardize the training and test sets to evaluate and reproduce CAD systems. Finally, to validate the utility of the BUS dataset, an evaluation framework is implemented to assess the performance of deep neural networks for segmenting and classifying breast lesions. Data Format and Usage Notes The BUS dataset is publicly available for academic and research purposes through an open‐access repository under the name BUS‐BRA: A Breast Ultrasound Dataset for Assessing CAD Systems. BUS images and reference segmentations are saved in Portable Network Graphic (PNG) format files, and the dataset information is stored in separate Comma‐Separated Value (CSV) files. Potential Applications The BUS‐BRA dataset can be used to develop and assess artificial intelligence‐based lesion detection and segmentation methods, and the classification of BUS images into pathological classes and BI‐RADS categories. Other potential applications include developing image processing methods like despeckle filtering and contrast enhancement methods to improve image quality and feature engineering for image description.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福大白发布了新的文献求助10
刚刚
刘大大123发布了新的文献求助10
1秒前
1秒前
啦啦啦完成签到,获得积分20
1秒前
xxl完成签到,获得积分10
1秒前
Louisa发布了新的文献求助10
2秒前
爱静静应助怡然的小蜜蜂采纳,获得10
2秒前
3秒前
娴娴完成签到 ,获得积分10
3秒前
和路雪完成签到,获得积分10
4秒前
4秒前
健忘泽洋发布了新的文献求助10
4秒前
欣慰的茉莉完成签到 ,获得积分10
4秒前
3kou完成签到 ,获得积分10
5秒前
领导范儿应助忧心的惜天采纳,获得10
6秒前
俏皮的访梦完成签到,获得积分20
7秒前
来自DF的小白完成签到,获得积分10
7秒前
8秒前
AhhHuang完成签到,获得积分10
11秒前
bkagyin应助滚滚真可爱采纳,获得10
12秒前
Sakura完成签到 ,获得积分10
13秒前
hxy完成签到 ,获得积分10
13秒前
14秒前
sjfczyh发布了新的文献求助10
15秒前
15秒前
烟花应助汤谷栽扶桑采纳,获得30
15秒前
bill发布了新的文献求助10
15秒前
大模型应助殷勤的钢铁侠采纳,获得10
15秒前
16秒前
科研通AI5应助念念采纳,获得10
16秒前
张桓完成签到,获得积分10
17秒前
18秒前
lin发布了新的文献求助10
18秒前
琪玛苏发布了新的文献求助10
20秒前
SYLH应助lengyu采纳,获得10
21秒前
RR发布了新的文献求助10
21秒前
bill完成签到,获得积分10
21秒前
yhf4356发布了新的文献求助10
23秒前
Apollo发布了新的文献求助20
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555334
求助须知:如何正确求助?哪些是违规求助? 3130933
关于积分的说明 9389211
捐赠科研通 2830448
什么是DOI,文献DOI怎么找? 1555992
邀请新用户注册赠送积分活动 726371
科研通“疑难数据库(出版商)”最低求助积分说明 715737