Preference matrix guided sparse canonical correlation analysis for mining brain imaging genetic associations in Alzheimer's disease

典型相关 影像遗传学 相关性 计算机科学 先验概率 人工智能 计算生物学 机器学习 模式识别(心理学) 神经影像学 数学 生物 贝叶斯概率 几何学 神经科学
作者
Jiahang Sha,Jingxuan Bao,Kefei Liu,Shu Yang,Zixuan Wen,Junhao Wen,Yuhan Cui,Boning Tong,Jason H. Moore,Andrew J. Saykin,Christos Davatzikos,Qi Long,Li Shen
出处
期刊:Methods [Elsevier]
卷期号:218: 27-38 被引量:4
标识
DOI:10.1016/j.ymeth.2023.07.007
摘要

Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetics-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlations as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助su采纳,获得10
刚刚
刚刚
科目三应助MJQ采纳,获得30
刚刚
刚刚
慕子发布了新的文献求助20
1秒前
lumangxiaozi完成签到,获得积分10
1秒前
积极的凌波完成签到,获得积分10
1秒前
xiaxiao应助小小酥采纳,获得100
1秒前
523完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
3秒前
Hupoo发布了新的文献求助10
3秒前
传奇3应助冬瓜有内涵呐采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
Aurora发布了新的文献求助10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
Chen发布了新的文献求助10
4秒前
prosperp应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
5秒前
伍贰肆发布了新的文献求助10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
闲听花落完成签到,获得积分10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762