Preference matrix guided sparse canonical correlation analysis for mining brain imaging genetic associations in Alzheimer's disease

典型相关 影像遗传学 相关性 计算机科学 先验概率 人工智能 计算生物学 机器学习 模式识别(心理学) 神经影像学 数学 生物 贝叶斯概率 几何学 神经科学
作者
Jiahang Sha,Jingxuan Bao,Kefei Liu,Shu Yang,Zixuan Wen,Junhao Wen,Yuhan Cui,Boning Tong,Jason H. Moore,Andrew J. Saykin,Christos Davatzikos,Qi Long,Li Shen
出处
期刊:Methods [Elsevier]
卷期号:218: 27-38 被引量:4
标识
DOI:10.1016/j.ymeth.2023.07.007
摘要

Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetics-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlations as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助纯真的凌兰采纳,获得30
刚刚
蝈蝈发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
蓝天应助早安采纳,获得30
4秒前
Lucas应助Muncy采纳,获得10
6秒前
田様应助FYX采纳,获得10
7秒前
fuchao发布了新的文献求助10
8秒前
考拉发布了新的文献求助30
8秒前
科研欢欢鱼完成签到,获得积分10
9秒前
活力怀绿完成签到,获得积分10
11秒前
田様应助无事小神仙采纳,获得10
12秒前
16秒前
丰盛的煎饼完成签到,获得积分0
16秒前
不难不难完成签到,获得积分10
18秒前
共享精神应助荔枝采纳,获得10
20秒前
yugy发布了新的文献求助10
21秒前
22秒前
无极微光应助古月采纳,获得20
23秒前
23秒前
材小料发布了新的文献求助10
27秒前
ChenXY完成签到,获得积分10
27秒前
halo发布了新的文献求助10
28秒前
lst完成签到,获得积分10
29秒前
科研通AI2S应助kangk采纳,获得10
30秒前
浮游应助空明流毓采纳,获得10
32秒前
33秒前
YUESIYA发布了新的文献求助30
34秒前
寒冷的奇异果完成签到,获得积分10
34秒前
spc68应助早安采纳,获得10
38秒前
复成完成签到 ,获得积分10
40秒前
光亮妙之完成签到,获得积分10
40秒前
dd发布了新的文献求助30
40秒前
整齐半青完成签到 ,获得积分10
40秒前
你好完成签到,获得积分10
41秒前
chenanqi完成签到,获得积分10
41秒前
42秒前
yfn完成签到,获得积分10
46秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521