Preference matrix guided sparse canonical correlation analysis for mining brain imaging genetic associations in Alzheimer's disease

典型相关 影像遗传学 相关性 计算机科学 先验概率 人工智能 计算生物学 机器学习 模式识别(心理学) 神经影像学 数学 生物 贝叶斯概率 几何学 神经科学
作者
Jiahang Sha,Jingxuan Bao,Kefei Liu,Shu Yang,Zixuan Wen,Junhao Wen,Yuhan Cui,Boning Tong,Jason H. Moore,Andrew J. Saykin,Christos Davatzikos,Qi Long,Li Shen
出处
期刊:Methods [Elsevier]
卷期号:218: 27-38 被引量:4
标识
DOI:10.1016/j.ymeth.2023.07.007
摘要

Investigating the relationship between genetic variation and phenotypic traits is a key issue in quantitative genetics. Specifically for Alzheimer's disease, the association between genetic markers and quantitative traits remains vague while, once identified, will provide valuable guidance for the study and development of genetics-based treatment approaches. Currently, to analyze the association of two modalities, sparse canonical correlation analysis (SCCA) is commonly used to compute one sparse linear combination of the variable features for each modality, giving a pair of linear combination vectors in total that maximizes the cross-correlation between the analyzed modalities. One drawback of the plain SCCA model is that the existing findings and knowledge cannot be integrated into the model as priors to help extract interesting correlations as well as identify biologically meaningful genetic and phenotypic markers. To bridge this gap, we introduce preference matrix guided SCCA (PM-SCCA) that not only takes priors encoded as a preference matrix but also maintains computational simplicity. A simulation study and a real-data experiment are conducted to investigate the effectiveness of the model. Both experiments demonstrate that the proposed PM-SCCA model can capture not only genotype-phenotype correlation but also relevant features effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
天才罗发布了新的文献求助10
1秒前
1秒前
Orange应助吾星安处采纳,获得10
1秒前
大意的白翠完成签到,获得积分10
2秒前
Criminology34应助璇璇采纳,获得10
2秒前
震动的糖豆完成签到,获得积分20
2秒前
自然妙旋完成签到,获得积分10
2秒前
3秒前
今后应助欣喜的硬币采纳,获得10
4秒前
4秒前
自由元菱完成签到,获得积分10
4秒前
4秒前
鬼荒十三发布了新的文献求助10
4秒前
wanci应助jou采纳,获得10
4秒前
GKPFT完成签到,获得积分10
5秒前
嘿嘿关注了科研通微信公众号
5秒前
36456657应助梓慧采纳,获得10
5秒前
jcm发布了新的文献求助10
5秒前
隐形曼青应助三伏天采纳,获得10
6秒前
6秒前
6秒前
黄大师完成签到,获得积分10
6秒前
思源应助zxp12373采纳,获得10
6秒前
vict完成签到,获得积分10
6秒前
zjt完成签到,获得积分10
6秒前
7秒前
7秒前
ytnju完成签到,获得积分10
7秒前
7秒前
1Liang发布了新的文献求助10
7秒前
8秒前
开朗的丸子给开朗的丸子的求助进行了留言
8秒前
搜集达人应助醉熏的烤鸡采纳,获得10
8秒前
小马甲应助cdbb采纳,获得10
8秒前
小马甲应助fffan采纳,获得10
9秒前
9秒前
9秒前
芝麻开门发布了新的文献求助10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619329
求助须知:如何正确求助?哪些是违规求助? 4704120
关于积分的说明 14925930
捐赠科研通 4759609
什么是DOI,文献DOI怎么找? 2550538
邀请新用户注册赠送积分活动 1513291
关于科研通互助平台的介绍 1474401