Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images

计算机科学 人工智能 推论 强化学习 数字化病理学 医学诊断 机器学习 深度学习 过程(计算) 构造(python库) 领域(数学) 模式识别(心理学) 病理 医学 纯数学 程序设计语言 操作系统 数学
作者
Tingting Zheng,Weixing Chen,Shuqin Li,Hao Quan,Mingchen Zou,Song Zheng,Yue Zhao,Xing‐Hua Gao,Xiaoyu Cui
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:108: 102275-102275 被引量:6
标识
DOI:10.1016/j.compmedimag.2023.102275
摘要

Cutaneous melanoma represents one of the most life-threatening malignancies. Histopathological image analysis serves as a vital tool for early melanoma detection. Deep neural network (DNN) models are frequently employed to aid pathologists in enhancing the efficiency and accuracy of diagnoses. However, due to the paucity of well-annotated, high-resolution, whole-slide histopathology image (WSI) datasets, WSIs are typically fragmented into numerous patches during the model training and testing stages. This process disregards the inherent interconnectedness among patches, potentially impeding the models' performance. Additionally, the presence of excess, non-contributing patches extends processing times and introduces substantial computational burdens. To mitigate these issues, we draw inspiration from the clinical decision-making processes of dermatopathologists to propose an innovative, weakly supervised deep reinforcement learning framework, titled Fast medical decision-making in melanoma histopathology images (FastMDP-RL). This framework expedites model inference by reducing the number of irrelevant patches identified within WSIs. FastMDP-RL integrates two DNN-based agents: the search agent (SeAgent) and the decision agent (DeAgent). The SeAgent initiates actions, steered by the image features observed in the current viewing field at various magnifications. Simultaneously, the DeAgent provides labeling probabilities for each patch. We utilize multi-instance learning (MIL) to construct a teacher-guided model (MILTG), serving a dual purpose: rewarding the SeAgent and guiding the DeAgent. Our evaluations were conducted using two melanoma datasets: the publicly accessible TCIA-CM dataset and the proprietary MELSC dataset. Our experimental findings affirm FastMDP-RL's ability to expedite inference and accurately predict WSIs, even in the absence of pixel-level annotations. Moreover, our research investigates the WSI-based interactive environment, encompassing the design of agents, state and reward functions, and feature extractors suitable for melanoma tissue images. This investigation offers valuable insights and references for researchers engaged in related studies. The code is available at: https://github.com/titizheng/FastMDP-RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31313完成签到,获得积分10
1秒前
xiaopei发布了新的文献求助10
2秒前
3秒前
Yolo发布了新的文献求助10
4秒前
4秒前
6秒前
HHH发布了新的文献求助10
6秒前
隐形曼青应助陆靖易采纳,获得10
7秒前
7秒前
xiaopei完成签到,获得积分10
8秒前
enchanted发布了新的文献求助10
9秒前
家伟发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
啦啦啦发布了新的文献求助10
9秒前
上官若男应助无情人雄采纳,获得10
10秒前
11秒前
11秒前
11秒前
哈哈hehe完成签到,获得积分10
12秒前
彭于晏应助鉴湖采纳,获得10
12秒前
12秒前
13秒前
十一完成签到,获得积分10
14秒前
Yukaze发布了新的文献求助10
15秒前
sxy发布了新的文献求助10
16秒前
肖雪依发布了新的文献求助10
17秒前
所所应助Ann采纳,获得10
17秒前
CipherSage应助内向怀曼采纳,获得10
18秒前
精明的期待完成签到,获得积分20
19秒前
CipherSage应助瘦瘦的曲奇采纳,获得10
19秒前
20秒前
汉堡包应助yx_cheng采纳,获得10
20秒前
852应助Yukaze采纳,获得10
21秒前
23秒前
24秒前
25秒前
能不能发一篇完成签到,获得积分10
25秒前
Lucas应助minrui采纳,获得20
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956275
求助须知:如何正确求助?哪些是违规求助? 3502464
关于积分的说明 11107805
捐赠科研通 3233133
什么是DOI,文献DOI怎么找? 1787170
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802093