Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images

计算机科学 人工智能 推论 强化学习 数字化病理学 医学诊断 机器学习 深度学习 过程(计算) 构造(python库) 领域(数学) 模式识别(心理学) 病理 医学 纯数学 程序设计语言 操作系统 数学
作者
Tingting Zheng,Weixing Chen,Shuqin Li,Hao Quan,Mingchen Zou,Song Zheng,Yue Zhao,Xing‐Hua Gao,Xiaoyu Cui
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102275-102275 被引量:6
标识
DOI:10.1016/j.compmedimag.2023.102275
摘要

Cutaneous melanoma represents one of the most life-threatening malignancies. Histopathological image analysis serves as a vital tool for early melanoma detection. Deep neural network (DNN) models are frequently employed to aid pathologists in enhancing the efficiency and accuracy of diagnoses. However, due to the paucity of well-annotated, high-resolution, whole-slide histopathology image (WSI) datasets, WSIs are typically fragmented into numerous patches during the model training and testing stages. This process disregards the inherent interconnectedness among patches, potentially impeding the models' performance. Additionally, the presence of excess, non-contributing patches extends processing times and introduces substantial computational burdens. To mitigate these issues, we draw inspiration from the clinical decision-making processes of dermatopathologists to propose an innovative, weakly supervised deep reinforcement learning framework, titled Fast medical decision-making in melanoma histopathology images (FastMDP-RL). This framework expedites model inference by reducing the number of irrelevant patches identified within WSIs. FastMDP-RL integrates two DNN-based agents: the search agent (SeAgent) and the decision agent (DeAgent). The SeAgent initiates actions, steered by the image features observed in the current viewing field at various magnifications. Simultaneously, the DeAgent provides labeling probabilities for each patch. We utilize multi-instance learning (MIL) to construct a teacher-guided model (MILTG), serving a dual purpose: rewarding the SeAgent and guiding the DeAgent. Our evaluations were conducted using two melanoma datasets: the publicly accessible TCIA-CM dataset and the proprietary MELSC dataset. Our experimental findings affirm FastMDP-RL's ability to expedite inference and accurately predict WSIs, even in the absence of pixel-level annotations. Moreover, our research investigates the WSI-based interactive environment, encompassing the design of agents, state and reward functions, and feature extractors suitable for melanoma tissue images. This investigation offers valuable insights and references for researchers engaged in related studies. The code is available at: https://github.com/titizheng/FastMDP-RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实大船完成签到,获得积分10
刚刚
蜗牛撵大象完成签到,获得积分10
刚刚
1秒前
sun发布了新的文献求助10
1秒前
1秒前
二二二发布了新的文献求助10
2秒前
开心的傲安完成签到,获得积分20
2秒前
麻麻完成签到,获得积分20
2秒前
DDTT完成签到,获得积分10
3秒前
霸气的念云完成签到,获得积分10
3秒前
Orange应助欢呼小蚂蚁采纳,获得10
3秒前
3秒前
SQ完成签到,获得积分10
4秒前
4秒前
飞跃海龙完成签到 ,获得积分10
4秒前
ufuon发布了新的文献求助10
5秒前
momo完成签到,获得积分10
6秒前
赘婿应助二二二采纳,获得10
6秒前
JamesPei应助HongJiang采纳,获得10
6秒前
clarkq完成签到,获得积分10
7秒前
orixero应助LIU采纳,获得10
7秒前
经法发布了新的文献求助10
7秒前
不吃橘子完成签到,获得积分10
7秒前
Cheryy完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
ding应助哈哈哈哈采纳,获得10
9秒前
Draeck发布了新的文献求助10
9秒前
kingwhitewing发布了新的文献求助10
9秒前
10秒前
clarkq发布了新的文献求助10
10秒前
10秒前
GGZ完成签到,获得积分10
10秒前
15860936613完成签到 ,获得积分10
10秒前
可爱的函函应助a方舟采纳,获得10
10秒前
11秒前
ee关闭了ee文献求助
11秒前
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678