Learning how to detect: A deep reinforcement learning method for whole-slide melanoma histopathology images

计算机科学 人工智能 推论 强化学习 数字化病理学 医学诊断 机器学习 深度学习 过程(计算) 构造(python库) 领域(数学) 模式识别(心理学) 病理 医学 纯数学 程序设计语言 操作系统 数学
作者
Tingting Zheng,Weixing Chen,Shuqin Li,Hao Quan,Mingchen Zou,Song Zheng,Yue Zhao,Xing‐Hua Gao,Xiaoyu Cui
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102275-102275 被引量:6
标识
DOI:10.1016/j.compmedimag.2023.102275
摘要

Cutaneous melanoma represents one of the most life-threatening malignancies. Histopathological image analysis serves as a vital tool for early melanoma detection. Deep neural network (DNN) models are frequently employed to aid pathologists in enhancing the efficiency and accuracy of diagnoses. However, due to the paucity of well-annotated, high-resolution, whole-slide histopathology image (WSI) datasets, WSIs are typically fragmented into numerous patches during the model training and testing stages. This process disregards the inherent interconnectedness among patches, potentially impeding the models' performance. Additionally, the presence of excess, non-contributing patches extends processing times and introduces substantial computational burdens. To mitigate these issues, we draw inspiration from the clinical decision-making processes of dermatopathologists to propose an innovative, weakly supervised deep reinforcement learning framework, titled Fast medical decision-making in melanoma histopathology images (FastMDP-RL). This framework expedites model inference by reducing the number of irrelevant patches identified within WSIs. FastMDP-RL integrates two DNN-based agents: the search agent (SeAgent) and the decision agent (DeAgent). The SeAgent initiates actions, steered by the image features observed in the current viewing field at various magnifications. Simultaneously, the DeAgent provides labeling probabilities for each patch. We utilize multi-instance learning (MIL) to construct a teacher-guided model (MILTG), serving a dual purpose: rewarding the SeAgent and guiding the DeAgent. Our evaluations were conducted using two melanoma datasets: the publicly accessible TCIA-CM dataset and the proprietary MELSC dataset. Our experimental findings affirm FastMDP-RL's ability to expedite inference and accurately predict WSIs, even in the absence of pixel-level annotations. Moreover, our research investigates the WSI-based interactive environment, encompassing the design of agents, state and reward functions, and feature extractors suitable for melanoma tissue images. This investigation offers valuable insights and references for researchers engaged in related studies. The code is available at: https://github.com/titizheng/FastMDP-RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haizz发布了新的文献求助10
1秒前
老实的夏柳完成签到,获得积分10
1秒前
刘大力发布了新的文献求助10
1秒前
YoroYoshi完成签到,获得积分10
1秒前
migoo完成签到 ,获得积分20
2秒前
pqy完成签到,获得积分10
2秒前
2秒前
马小翠完成签到,获得积分10
4秒前
所所应助keke采纳,获得10
4秒前
微暖完成签到,获得积分0
4秒前
文成完成签到,获得积分10
4秒前
4秒前
devin22222发布了新的文献求助20
5秒前
莫里发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
wangdunli完成签到,获得积分10
6秒前
kano发布了新的文献求助10
7秒前
nihao完成签到,获得积分10
7秒前
Yon完成签到 ,获得积分10
8秒前
9秒前
10秒前
可爱斩完成签到,获得积分10
10秒前
Tokgo完成签到,获得积分10
10秒前
大圣发布了新的文献求助10
10秒前
洋葱发布了新的文献求助10
11秒前
devin22222完成签到,获得积分10
12秒前
StevenZhao完成签到,获得积分0
12秒前
12秒前
辛勤寻琴发布了新的文献求助10
13秒前
14秒前
14秒前
Jasper应助可爱斩采纳,获得10
14秒前
lwl完成签到,获得积分10
14秒前
背后的炎彬完成签到,获得积分10
15秒前
自由飞阳完成签到,获得积分10
15秒前
15秒前
认真灯泡完成签到,获得积分10
15秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296012
求助须知:如何正确求助?哪些是违规求助? 2931918
关于积分的说明 8454114
捐赠科研通 2604414
什么是DOI,文献DOI怎么找? 1421736
科研通“疑难数据库(出版商)”最低求助积分说明 661190
邀请新用户注册赠送积分活动 644102