Predictors of Extraprostatic Extension in Patients with Prostate Cancer

医学 前列腺切除术 前列腺癌 逻辑回归 前列腺 活检 磁共振成像 回顾性队列研究 放射科 阶段(地层学) 泌尿科 癌症 内科学 肿瘤科 古生物学 生物
作者
See Hyung Kim,Seung Hyun Cho,Won Hwa Kim,Hye Jung Kim,Jongmin Park,Gab Chul Kim,Hun Kyu Ryeom,Yu Sung Yoon,Jung Guen
出处
期刊:Journal of Clinical Medicine [MDPI AG]
卷期号:12 (16): 5321-5321 被引量:4
标识
DOI:10.3390/jcm12165321
摘要

Purpose: To identify effective factors predicting extraprostatic extension (EPE) in patients with prostate cancer (PCa). Methods: This retrospective cohort study recruited 898 consecutive patients with PCa treated with robot-assisted laparoscopic radical prostatectomy. The patients were divided into EPE and non-EPE groups based on the analysis of whole-mount histopathologic sections. Histopathological analysis (ISUP biopsy grade group) and magnetic resonance imaging (MRI) (PI-RADS v2.1 scores [1–5] and the Mehralivand EPE grade [0–3]) were used to assess the prediction of EPE. We also assessed the clinical usefulness of the prediction model based on decision-curve analysis. Results: Of 800 included patients, 235 (29.3%) had EPE, and 565 patients (70.7%) did not (non-EPE). Multivariable logistic regression analysis showed that the biopsy ISUP grade, PI-RADS v2.1 score, and Mehralivand EPE grade were independent risk factors for EPE. In the regression assessment of the models, the best discrimination (area under the curve of 0.879) was obtained using the basic model (age, serum PSA, prostate volume at MRI, positive biopsy core, clinical T stage, and D’Amico risk group) and Mehralivand EPE grade 3. Decision-curve analysis showed that combining Mehralivand EPE grade 3 with the basic model resulted in superior net benefits for predicting EPE. Conclusion: Mehralivand EPE grades and PI-RADS v2.1 scores, in addition to basic clinical and demographic information, are potentially useful for predicting EPE in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar举报培根不是吃的肉求助涉嫌违规
2秒前
SciGPT应助无限山晴采纳,获得10
2秒前
吃算不算超能力完成签到,获得积分20
3秒前
Yvette完成签到,获得积分10
4秒前
4秒前
5秒前
orixero应助游泳的烤鸭采纳,获得10
5秒前
8R60d8应助55555采纳,获得30
6秒前
6秒前
6秒前
彭于晏应助迅速的仰采纳,获得10
8秒前
yar给培根不是吃的肉的求助进行了留言
8秒前
威武雅阳发布了新的文献求助10
8秒前
9秒前
9秒前
萧一江发布了新的文献求助10
10秒前
Nat完成签到,获得积分10
11秒前
嘞是举仔发布了新的文献求助10
11秒前
青城昊完成签到,获得积分10
12秒前
天虾第一发布了新的文献求助10
12秒前
13秒前
xjj发布了新的文献求助10
13秒前
伴夏发布了新的文献求助10
14秒前
alone发布了新的文献求助10
15秒前
Isabel完成签到,获得积分10
15秒前
聪明的鹤完成签到 ,获得积分10
16秒前
Touka发布了新的文献求助50
16秒前
18秒前
DoctorYan完成签到,获得积分10
18秒前
星辰大海应助LLLLLL采纳,获得10
18秒前
温暖天与应助BUG采纳,获得10
22秒前
华仔应助Meggy采纳,获得10
22秒前
23秒前
汉堡包应助游泳的烤鸭采纳,获得10
23秒前
24秒前
上官若男应助王电催化采纳,获得10
25秒前
斯文败类应助天虾第一采纳,获得10
25秒前
嘞是举仔完成签到,获得积分20
25秒前
英姑应助淘气的太阳星采纳,获得10
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557