In-depth proteomic signature of parathyroid carcinoma

免疫组织化学 内科学 化学 分子生物学 病理 医学 生物
作者
Sung Hye Kong,Joon Hyeop Lee,Jeong Mo Bae,Namki Hong,Hyeyoon Kim,So Young Park,Yong Jun Choi,Sihoon Lee,Yumie Rhee,Sang Wan Kim,Dohyun Han,Jung Hee Kim,Chan Soo Shin
出处
期刊:European journal of endocrinology [Bioscientifica]
卷期号:188 (4): 385-394 被引量:3
标识
DOI:10.1093/ejendo/lvad046
摘要

Diagnosing parathyroid carcinoma (PC) is complicated and controversial that early diagnosis and intervention are often difficult. Therefore, we aimed to elucidate the protein signatures of PC through quantitative proteomic analyses to aid in the early and accurate diagnosis of PC.We conducted a retrospective cohort study.We performed liquid chromatography with tandem mass spectrometry using formalin-fixed paraffin-embedded samples. For the analyses, 23 PC and 15 parathyroid adenoma (PA) tissues were collected from 6 tertiary hospitals in South Korea.The mean age of the patients was 52 years, and 63% were women. Proteomic expression profiling revealed 304 differentially expressed proteins (DEPs) with a cut-off of P < .05 and fold change >1.5. Among DEPs, we identified a set of 5 proteins that can discriminate PC from PA: carbonic anhydrase 4 (CA4), alpha/beta hydrolase domain-containing protein 14B (ABHD14B), laminin subunit beta-2 (LAMB2), CD44 antigen (CD44), and alpha-1-acid glycoprotein 1 (ORM1) that exhibited the highest area under the curve of 0.991 in neural network model. The nuclear percentage of CA4 and LAMB2 in immunohistochemistry was significantly lower in PC tissue than in the PA (CA4: 2.77 ± 1.96%, 26.2 ± 3.45%, P < .001; LAMB2: 6.86 ± 3.46%, 38.54 ± 4.13%, P < .001). The most enriched canonical pathways in PC included glycoprotein-6 signaling and mammalian target of rapamycin (mTOR).We identified key proteins differentially expressed between PC and PA using proteomic analyses of parathyroid neoplasms. These findings may help to diagnose PC accurately and elucidate potential therapeutic targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WYang完成签到,获得积分10
刚刚
小超人完成签到 ,获得积分10
刚刚
如初发布了新的文献求助10
刚刚
1秒前
随机的昵称完成签到,获得积分10
1秒前
阿龙完成签到,获得积分10
1秒前
Perrylin718完成签到,获得积分10
1秒前
1秒前
1秒前
lululemon完成签到 ,获得积分10
2秒前
风雨霖霖关注了科研通微信公众号
2秒前
biubiu完成签到,获得积分10
2秒前
项听蓉完成签到,获得积分10
2秒前
欣慰的海雪关注了科研通微信公众号
3秒前
貔貅完成签到,获得积分10
3秒前
4秒前
谦让柜子发布了新的文献求助10
4秒前
5秒前
5秒前
苹果小蜜蜂完成签到,获得积分10
5秒前
忧郁的风华完成签到,获得积分10
5秒前
zhang26xian完成签到,获得积分10
6秒前
chen完成签到,获得积分10
7秒前
7秒前
sky完成签到 ,获得积分10
7秒前
vv发布了新的文献求助10
8秒前
8秒前
赘婿应助奔流的河采纳,获得10
8秒前
小冯完成签到,获得积分10
8秒前
璃月品茶钟离完成签到,获得积分10
9秒前
子夜完成签到,获得积分10
9秒前
9秒前
Gilana完成签到,获得积分10
10秒前
yihuifa完成签到 ,获得积分10
10秒前
lin完成签到,获得积分10
10秒前
风淡了完成签到,获得积分10
10秒前
guomingqian完成签到,获得积分20
10秒前
尤可完成签到 ,获得积分10
10秒前
11秒前
guojingjing发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890