Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review

计算机科学 质量(理念) 人工智能 机器学习 物理 量子力学
作者
Rong Ding,Lianhui Yu,Chenghui Wang,Shihong Zhong,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Taylor & Francis]
卷期号:54 (7): 2618-2635 被引量:16
标识
DOI:10.1080/10408347.2023.2189477
摘要

The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
super chan发布了新的文献求助10
1秒前
谦让的抽屉完成签到,获得积分20
2秒前
滴答滴答发布了新的文献求助10
3秒前
早上好发布了新的文献求助10
4秒前
Ava应助张育程采纳,获得10
4秒前
小马甲应助秤子采纳,获得10
5秒前
xqy完成签到 ,获得积分10
5秒前
连烙完成签到,获得积分20
6秒前
8秒前
9秒前
夏末关注了科研通微信公众号
9秒前
123发布了新的文献求助10
11秒前
连烙发布了新的文献求助10
12秒前
烤鸭完成签到 ,获得积分10
12秒前
荒糖发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
15秒前
yangya完成签到,获得积分10
15秒前
16秒前
趙途嘵生发布了新的文献求助10
17秒前
科研通AI5应助称心寒松采纳,获得10
17秒前
17秒前
flymouse完成签到,获得积分10
17秒前
wss发布了新的文献求助10
18秒前
19秒前
HH完成签到,获得积分10
19秒前
20秒前
20秒前
Purple发布了新的文献求助10
21秒前
wanci应助谦让的抽屉采纳,获得10
21秒前
22秒前
24秒前
簌落完成签到,获得积分10
24秒前
科研通AI5应助辛勤青亦采纳,获得20
25秒前
深情安青应助123采纳,获得10
26秒前
张育程发布了新的文献求助10
26秒前
27秒前
Purple完成签到,获得积分10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427