Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review

计算机科学 质量(理念) 人工智能 机器学习 物理 量子力学
作者
Rong Ding,Lianhui Yu,Chenghui Wang,Shihong Zhong,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:54 (7): 2618-2635 被引量:31
标识
DOI:10.1080/10408347.2023.2189477
摘要

The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐昊完成签到,获得积分10
1秒前
dundun完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
2秒前
大个应助小巧静竹采纳,获得10
2秒前
goudan123发布了新的文献求助10
3秒前
虎啊虎啊完成签到,获得积分10
4秒前
er完成签到,获得积分10
4秒前
5秒前
5秒前
打打应助Leo采纳,获得20
5秒前
呵呵完成签到,获得积分10
6秒前
6秒前
云云发布了新的文献求助10
6秒前
景磬完成签到,获得积分10
6秒前
共享精神应助mw采纳,获得10
6秒前
嘉子完成签到,获得积分10
6秒前
云小澈完成签到,获得积分20
6秒前
大白发布了新的文献求助10
7秒前
无花果应助提子采纳,获得10
7秒前
Orange应助Xiaoxiannv采纳,获得10
8秒前
玉米发布了新的文献求助10
8秒前
昭玥完成签到,获得积分10
9秒前
yyy完成签到,获得积分20
9秒前
10秒前
10秒前
CodeCraft应助老贺忠实粉丝采纳,获得10
10秒前
桃子完成签到 ,获得积分10
10秒前
10秒前
万能图书馆应助云云采纳,获得10
11秒前
途莫若完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
sunzhitao完成签到,获得积分20
11秒前
云小澈发布了新的文献求助10
11秒前
12秒前
13秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462