Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review

计算机科学 质量(理念) 人工智能 机器学习 物理 量子力学
作者
Rong Ding,Lianhui Yu,Chenghui Wang,Shihong Zhong,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Taylor & Francis]
卷期号:54 (7): 2618-2635 被引量:18
标识
DOI:10.1080/10408347.2023.2189477
摘要

The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ning发布了新的文献求助10
刚刚
Lily发布了新的文献求助10
刚刚
Donk完成签到 ,获得积分10
刚刚
1秒前
cyanpomelo应助飞快的薯片采纳,获得10
1秒前
howgoods完成签到 ,获得积分10
1秒前
1秒前
HC完成签到,获得积分10
3秒前
後zgw完成签到,获得积分10
3秒前
Eddy完成签到,获得积分10
3秒前
4秒前
Lucas应助真实的半仙采纳,获得10
4秒前
4秒前
胖莹完成签到 ,获得积分10
5秒前
ting发布了新的文献求助10
5秒前
6秒前
小蛙发布了新的文献求助10
6秒前
zlw完成签到,获得积分10
6秒前
7秒前
9秒前
Pluto发布了新的文献求助10
9秒前
9秒前
果实发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Lily完成签到,获得积分10
12秒前
陈黑手发布了新的文献求助10
12秒前
沙力VAN完成签到,获得积分10
13秒前
凝雁完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
小丑鱼儿完成签到 ,获得积分10
14秒前
共享精神应助Swannnn采纳,获得10
15秒前
大个应助qq16采纳,获得10
15秒前
无限尔云发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
佳子发布了新的文献求助20
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960936
求助须知:如何正确求助?哪些是违规求助? 3507194
关于积分的说明 11134321
捐赠科研通 3239560
什么是DOI,文献DOI怎么找? 1790248
邀请新用户注册赠送积分活动 872244
科研通“疑难数据库(出版商)”最低求助积分说明 803149