Quality assessment of traditional Chinese medicine based on data fusion combined with machine learning: A review

计算机科学 质量(理念) 人工智能 机器学习 物理 量子力学
作者
Rong Ding,Lianhui Yu,Chenghui Wang,Shihong Zhong,Rui Gu
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:54 (7): 2618-2635 被引量:31
标识
DOI:10.1080/10408347.2023.2189477
摘要

The authenticity and quality of traditional Chinese medicine (TCM) directly impact clinical efficacy and safety. Quality assessment of traditional Chinese medicine (QATCM) is a global concern due to increased demand and shortage of resources. Recently, modern analytical technologies have been extensively investigated and utilized to analyze the chemical composition of TCM. However, a single analytical technique has some limitations, and judging the quality of TCM only from the characteristics of the components is not enough to reflect the overall view of TCM. Thus, the development of multi-source information fusion technology and machine learning (ML) has further improved QATCM. Data information from different analytical instruments can better understand the connection between herbal samples from multiple aspects. This review focuses on the use of data fusion (DF) and ML in QATCM, including chromatography, spectroscopy, and other electronic sensors. The common data structures and DF strategies are introduced, followed by ML methods, including fast-growing deep learning. Finally, DF strategies combined with ML methods are discussed and illustrated for research on applications such as source identification, species identification, and content prediction in TCM. This review demonstrates the validity and accuracy of QATCM-based DF and ML strategies and provides a reference for developing and applying QATCM methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123发布了新的文献求助10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
zpl发布了新的文献求助10
1秒前
一个小短发完成签到,获得积分10
2秒前
2秒前
善学以致用应助Carl采纳,获得10
3秒前
4秒前
薛变霞发布了新的文献求助10
4秒前
张琳完成签到 ,获得积分10
5秒前
科研通AI6应助积极毛巾采纳,获得10
5秒前
李顺利完成签到 ,获得积分10
5秒前
Yuuuan完成签到,获得积分10
7秒前
hhhpass发布了新的文献求助10
8秒前
NexusExplorer应助潘2333采纳,获得10
8秒前
砰砰发布了新的文献求助10
8秒前
852应助zpl采纳,获得10
9秒前
9秒前
domkps完成签到 ,获得积分0
10秒前
cccc完成签到,获得积分10
10秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
大脸猫完成签到 ,获得积分10
13秒前
14秒前
赘婿应助实验鱼采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
黛西完成签到,获得积分10
15秒前
16秒前
丘比特应助我我我采纳,获得10
16秒前
X519664508完成签到,获得积分10
17秒前
17秒前
砰砰完成签到,获得积分10
17秒前
吕峰发布了新的文献求助10
18秒前
云漪完成签到,获得积分10
18秒前
18秒前
Jiangbs发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693462
求助须知:如何正确求助?哪些是违规求助? 5093130
关于积分的说明 15211816
捐赠科研通 4850452
什么是DOI,文献DOI怎么找? 2601739
邀请新用户注册赠送积分活动 1553549
关于科研通互助平台的介绍 1511540