控制理论(社会学)
非周期图
估计员
跟踪误差
容错
有界函数
计算机科学
力矩(物理)
控制器(灌溉)
自适应控制
控制(管理)
数学
人工智能
组合数学
分布式计算
物理
数学分析
统计
生物
经典力学
农学
作者
Xingling Shao,Jintao Zhang,L Xu,Wendong Zhang
标识
DOI:10.1016/j.ast.2022.107881
摘要
In this paper, an appointed-time guaranteed adaptive fault-tolerant attitude tracking for quadrotors with aperiodic data updating is concerned, where inertial moment variation, extraneous disturbance and unknown actuator faults are simultaneously involved. An adaptive parameter estimation law is updated to identify the partial effectiveness loss of actuation and alleviate the estimation burden of suggested observer. Then through filtering manipulations upon aperiodic system states, a novel event-triggered unknown system dynamics estimator (ETUSDE) is developed to learn the remaining uncertainties with exponential error decaying and decreased updating cost, where an event-triggering criterion is incorporated to schedule the transmission instants for control behavior and angular rate, and the explicit formulation between estimation error upper boundary and design coefficients is derived. An appointed-time prescribed performance control (APPC) is introduced to allow for pregiven attitude behaviors. By fusion of adaptive law, ETUSDE and APPC, an adaptive event-triggered attitude control policy is synthesized that delivers appointed-time convergence, accurate steady response and decreased sampling burden. Meanwhile, Lyapunov analysis shows that all the error variables contained in the closed-loop system are ultimately uniformly bounded. Eventually, experiments on a quadrotor attitude test rig are conducted to confirm the superiorities of suggested control strategy.
科研通智能强力驱动
Strongly Powered by AbleSci AI