微泡
PI3K/AKT/mTOR通路
肿瘤微环境
癌细胞
癌症研究
细胞毒性T细胞
外体
生物
免疫系统
血管生成
CD8型
蛋白激酶B
T细胞
重编程
细胞生物学
癌症
转移
细胞
免疫学
信号转导
小RNA
生物化学
体外
基因
遗传学
作者
Abhishek Choudhury,Soumya Chatterjee,Shauryabrota Dalui,Pronabesh Ghosh,Altamas Hossain Daptary,Golam Kibria Mollah,Arindam Bhattacharyya
摘要
Abstract Cytotoxic CD8 + T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer‐derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In‐vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI