Breast cancer cell derived exosomes reduces glycolysis of activated CD8 + T cells in a AKT‐mTOR dependent manner

微泡 PI3K/AKT/mTOR通路 肿瘤微环境 癌细胞 癌症研究 细胞毒性T细胞 外体 生物 免疫系统 血管生成 CD8型 蛋白激酶B T细胞 重编程 细胞生物学 癌症 转移 细胞 免疫学 信号转导 小RNA 生物化学 体外 基因 遗传学
作者
Abhishek Choudhury,Soumya Chatterjee,Shauryabrota Dalui,Pronabesh Ghosh,Altamas Hossain Daptary,Golam Kibria Mollah,Arindam Bhattacharyya
出处
期刊:Cell Biology International [Wiley]
被引量:1
标识
DOI:10.1002/cbin.12241
摘要

Abstract Cytotoxic CD8 + T cells plays a pivotal role in the adaptive immune system to protect the organism against infections and cancer. During activation and response, T cells undergo a metabolic reprogramming that involves various metabolic pathways, with a predominant reliance on glycolysis to meet their increased energy demands and enhanced effector response. Recently, extracellular vesicles (EVs) known as exosomes have been recognized as crucial signaling mediators in regulating the tumor microenvironment (TME). Recent reports indicates that exosomes may transfer biologically functional molecules to the recipient cells, thereby facilitate cancer progression, angiogenesis, metastasis, drug resistance, and immunosuppression by reprogramming the metabolism of cancer cells. This study sought to enlighten possible involvement of cancer‐derived exosomes in CD8 + T cell glucose metabolism and discover a regulated signalome as a mechanism of action. We observed reduction in glucose metabolism due to downregulation of AKT/mTOR signalome in activated CD8 + T cells after cancer derived exosome exposure. In‐vivo murine breast tumor studies showed better tumor control and antitumor CD8 + T cell glycolysis and effector response after abrogation of exosome release from breast cancer cells. Summarizing, the present study establishes an immune evasion mechanism of breast cancer cell secreted exosomes that will act as a foundation for future precision cancer therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绝尘发布了新的文献求助10
刚刚
刚刚
科研通AI5应助嗯哼采纳,获得10
刚刚
竹心蜓发布了新的文献求助10
1秒前
1秒前
3秒前
ss发布了新的文献求助10
4秒前
科研通AI5应助都是采纳,获得30
5秒前
Cactus应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
甜心院士应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
dumo应助科研通管家采纳,获得50
6秒前
dumo应助科研通管家采纳,获得50
6秒前
Hello应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
111应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
Jerry完成签到,获得积分10
8秒前
昏睡的蟠桃应助bgxl205采纳,获得30
10秒前
文昊完成签到,获得积分10
12秒前
Alive发布了新的文献求助30
12秒前
15秒前
小马甲应助菠萝派采纳,获得10
16秒前
17秒前
打打应助roleplay采纳,获得10
17秒前
18秒前
JamesPei应助向上的小草采纳,获得10
18秒前
18秒前
20秒前
于于于发布了新的文献求助10
20秒前
高挑的若雁完成签到 ,获得积分10
20秒前
母广明完成签到 ,获得积分10
20秒前
21秒前
倪满分发布了新的文献求助10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423