Research on dynamic constraint mechanism and motion control of intelligent vehicles based on preview distance optimization under complex road conditions

机制(生物学) 约束(计算机辅助设计) 运动(物理) 计算机科学 控制理论(社会学) 控制工程 控制(管理) 运动控制 工程类 模拟 人工智能 机械工程 机器人 物理 量子力学
作者
Qing Ye,Rang Huang,Yao Zhang,Ruochen Wang,Mohammed Chadli,Long Chen
出处
期刊:Transactions of The Canadian Society for Mechanical Engineering [Canadian Science Publishing]
标识
DOI:10.1139/tcsme-2023-0051
摘要

Aiming at the coupling and conflict issues between intelligent vehicle dynamics characteristics and path tracking system under complex road conditions, this paper investigates the dynamics constraint mechanism and motion control of intelligent vehicles, and proposes an intelligent vehicle lateral–vertical cooperative control method based on optimized preview distance. To begin with, an intelligent vehicle path tracking control system based on expected yaw velocity has been designed by establishing a three-degree-of-freedom dynamic model for intelligent vehicle. Then, we analyzed the mechanism by which changes in vehicle speed, road curvature, and preview distance affect the accuracy of vehicle path tracking and handling stability. Considering the “human-vehicle-road” system in intelligent transportation systems, critical values for collision and instability were set. Furthermore, we designed a proactive optimization method for preview distance under different working conditions, using an optimization algorithm to improve path tracking accuracy while ensuring vehicle stability, based on the lateral displacement deviation and lateral orientation deviation representing the accuracy of path tracking, as well as the lateral acceleration representing handling stability. Finally, hardware-in-the-loop platform test was conducted. The simulation and test results show that the optimized path tracking algorithm reduces lateral deviation to as low as 0.05 m, and the stability constraint control in the algorithm can be triggered promptly even under extreme conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的远山完成签到,获得积分10
1秒前
3秒前
ladysansan发布了新的文献求助10
3秒前
5秒前
Amber完成签到,获得积分10
5秒前
6秒前
天天快乐应助唠叨的以柳采纳,获得10
6秒前
7秒前
Kiling完成签到 ,获得积分10
7秒前
Lucas应助xxxxx炒菜采纳,获得20
8秒前
劲秉应助xiongqi采纳,获得30
9秒前
9秒前
FashionBoy应助云上人采纳,获得10
10秒前
Aray发布了新的文献求助30
10秒前
刘溜溜完成签到 ,获得积分10
11秒前
Li发布了新的文献求助10
12秒前
12秒前
香蕉觅云应助ab采纳,获得10
13秒前
房山芙完成签到,获得积分10
14秒前
17秒前
紧张的板凳完成签到,获得积分10
17秒前
ladysansan完成签到,获得积分10
19秒前
hwzhou10发布了新的文献求助10
19秒前
~Dreamboat发布了新的文献求助10
19秒前
充电宝应助淡然靖柔采纳,获得10
19秒前
21秒前
杳鸢应助冷酷紫南采纳,获得200
23秒前
666完成签到 ,获得积分10
23秒前
licomen完成签到,获得积分20
23秒前
山楂完成签到,获得积分10
23秒前
Li完成签到,获得积分10
24秒前
25秒前
27秒前
Aray完成签到,获得积分10
27秒前
licomen发布了新的文献求助10
28秒前
852应助努力奋斗采纳,获得10
29秒前
29秒前
彭于晏应助红海采纳,获得10
30秒前
ab发布了新的文献求助10
30秒前
31秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264540
求助须知:如何正确求助?哪些是违规求助? 2904577
关于积分的说明 8330847
捐赠科研通 2574839
什么是DOI,文献DOI怎么找? 1399516
科研通“疑难数据库(出版商)”最低求助积分说明 654506
邀请新用户注册赠送积分活动 633201