亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Small-Object Detection Model Based on Improved YOLOv8s for UAV Image Scenarios

计算机科学 人工智能 计算机视觉 目标检测 特征(语言学) 棱锥(几何) 卷积(计算机科学) 特征提取 对象(语法) 模式识别(心理学) 人工神经网络 数学 哲学 语言学 几何学
作者
Jianjun Ni,Shengjie Zhu,Guangyi Tang,Chunyan Ke,Tingting Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (13): 2465-2465 被引量:4
标识
DOI:10.3390/rs16132465
摘要

Small object detection for unmanned aerial vehicle (UAV) image scenarios is a challenging task in the computer vision field. Some problems should be further studied, such as the dense small objects and background noise in high-altitude aerial photography images. To address these issues, an enhanced YOLOv8s-based model for detecting small objects is presented. The proposed model incorporates a parallel multi-scale feature extraction module (PMSE), which enhances the feature extraction capability for small objects by generating adaptive weights with different receptive fields through parallel dilated convolution and deformable convolution, and integrating the generated weight information into shallow feature maps. Then, a scale compensation feature pyramid network (SCFPN) is designed to integrate the spatial feature information derived from the shallow neural network layers with the semantic data extracted from the higher layers of the network, thereby enhancing the network’s capacity for representing features. Furthermore, the largest-object detection layer is removed from the original detection layers, and an ultra-small-object detection layer is applied, with the objective of improving the network’s detection performance for small objects. Finally, the WIOU loss function is employed to balance high- and low-quality samples in the dataset. The results of the experiments conducted on the two public datasets illustrate that the proposed model can enhance the object detection accuracy in UAV image scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
李健应助阎烨磊采纳,获得30
13秒前
今后应助HC采纳,获得10
15秒前
cy发布了新的文献求助10
16秒前
44秒前
阎烨磊发布了新的文献求助30
47秒前
55秒前
阎烨磊完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
段誉完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
longxingbo发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
GQ完成签到,获得积分10
7分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000782
关于积分的说明 8793710
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471955
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313