Multiscale 1-DCNN for Damage Localization and Quantification Using Guided Waves With Novel Data Fusion Technique and New Self-Attention Module

计算机科学 分段 特征提取 卷积神经网络 模式识别(心理学) 传感器融合 特征(语言学) 信号(编程语言) 多径传播 人工智能 算法 频道(广播) 数据挖掘 数学 哲学 数学分析 语言学 程序设计语言 计算机网络
作者
Yunlai Liao,Yihan Wang,Xianping Zeng,Minhuang Wu,Xinlin Qing
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (1): 492-502 被引量:16
标识
DOI:10.1109/tii.2023.3268442
摘要

This article proposes an innovative damage localization and size quantification method named as MSCNNSAM based on new multiscale convolutional neural network (MSCNN) and novel small-weighted zero-setting self-attentive module (SAM) in carbon fiber reinforced plastic structures. Firstly, an improved piecewise aggregate approximation algorithm (IPAA) is developed to compress the guided wave signal and extract a series of damage indexes (DI). Considering the different effects of the damage location on the different sensing paths, a new method of damage information targeting enhancement and multipath data fusion is proposed. Then, a novel MSCNN architecture is also proposed for the inherent multiscale characteristics of the guided wave signal, which takes the multipath fused data as input and uses regression and classification methods to directly predict the location and size of the damage. Finally, to further improve the performance of the MSCNN, a SAM is proposed to effectively avoid the influence of low-information channel features and improve the damage feature extraction capability of the network. The proposed method is evaluated through experiments on a guided wave testing platform. Experimental results and comprehensive comparison analysis with respect to the state-of-the-art damage localization and quantification methods have demonstrated the superiority of the proposed MSCNNSAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌鱼应助hbzyydx46采纳,获得10
刚刚
1秒前
肥肠的枣糕啊完成签到,获得积分10
1秒前
猪小猪完成签到,获得积分10
4秒前
任性半凡完成签到,获得积分10
5秒前
丘比特应助ungujgjugjyfjuf采纳,获得10
5秒前
6秒前
江漓发布了新的文献求助10
6秒前
我是老大应助跳跃的听筠采纳,获得10
7秒前
8秒前
10秒前
John发布了新的文献求助10
11秒前
524应助coconut采纳,获得10
11秒前
12秒前
耀灵发布了新的文献求助50
13秒前
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
彭于晏应助科研通管家采纳,获得10
14秒前
kingwill应助科研通管家采纳,获得20
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
科目三应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得20
15秒前
Akim应助Hommand_藏山采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
cxt发布了新的文献求助10
15秒前
芒果完成签到,获得积分10
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3774881
求助须知:如何正确求助?哪些是违规求助? 3320672
关于积分的说明 10201424
捐赠科研通 3035544
什么是DOI,文献DOI怎么找? 1665536
邀请新用户注册赠送积分活动 796983
科研通“疑难数据库(出版商)”最低求助积分说明 757683