已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

In-situ synthesis of Ti5Si3-reinforced titanium matrix nanocomposite by selective laser melting: Quasi-continuous reinforcement network and enhanced mechanical performance

材料科学 复合材料 纳米复合材料 纳米压痕 断裂韧性 缩进 韧性 选择性激光熔化 搅拌摩擦加工 微观结构
作者
Xing Zhang,Dian Li,Yufeng Zheng,Pouya Shojaei,Mohamed B. Trabia,Brendan O’Toole,Dong Lin,Leslie T. Mushongera,Yiliang Liao
出处
期刊:Journal of Materials Processing Technology [Elsevier]
卷期号:309: 117752-117752 被引量:17
标识
DOI:10.1016/j.jmatprotec.2022.117752
摘要

Titanium matrix nanocomposites (TMNCs) with quasi-continuously distributed Ti5Si3 reinforcements exhibit high material strength, good thermal stability, great tribological properties, and high fracture toughness. However, fabrication of such TMNCs via advanced additive manufacturing (AM) techniques has rarely been realized due to the presence of AM-induced large columnar grains and the cracking issue associated with the reinforcement coarsening. Here, we report a nanoparticle-mediated approach to in-situ fabricate nano-Ti5Si3 reinforced TMNC coatings by selective laser melting (SLM) of Ti powders and minor amount of SiC nanoparticles. Results showed that with the optimized SiC amount and SLM processing parameters, a crack-free and ultrahigh-strength TMNC consisted of near-equiaxed grain structure and nano-scale Ti5Si3 network at the grain boundaries was successfully produced. The optimized TMNC showed an ultrahigh surface microhardness of 706 VHN, 51.5% higher than that of SLM-fabricated SiC-free sample (466 VHN). Spherical nanoindentation results showed that the effective indentation modulus and indentation yield strength were improved by 62.6% and 57.2%, respectively. A more pronounced strain hardening phenomenon was also observed in the optimized TMNC. The dry sliding tests revealed that the wear rate was reduced by 70%, and the wear mechanism transferred from abrasion to adhesion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
芒果椿完成签到,获得积分20
3秒前
yunga发布了新的文献求助10
4秒前
emeqwq完成签到,获得积分10
4秒前
必毕业完成签到,获得积分10
6秒前
8秒前
伶俐哈密瓜完成签到,获得积分20
8秒前
9秒前
11秒前
11秒前
12秒前
12秒前
Hello应助HS采纳,获得10
13秒前
醉熏的觅柔完成签到,获得积分20
14秒前
超级诗桃发布了新的文献求助10
15秒前
CSY发布了新的文献求助10
15秒前
万能图书馆应助zhouzhou采纳,获得10
15秒前
15秒前
15秒前
16秒前
goufufu发布了新的文献求助10
17秒前
melody发布了新的文献求助10
17秒前
搜集达人应助wwc采纳,获得10
17秒前
17秒前
Anesthesialy发布了新的文献求助10
18秒前
yvonne关注了科研通微信公众号
20秒前
23秒前
幽默不愁完成签到,获得积分10
23秒前
省人民医院敬博应助HHH采纳,获得10
23秒前
小林太郎应助肉末茄子采纳,获得20
24秒前
24秒前
27秒前
28秒前
小蘑菇应助阔达的白山采纳,获得10
28秒前
HS发布了新的文献求助10
29秒前
木头人456发布了新的文献求助50
31秒前
31秒前
顾矜应助melody采纳,获得10
31秒前
wwc发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538721
求助须知:如何正确求助?哪些是违规求助? 3116413
关于积分的说明 9325163
捐赠科研通 2814274
什么是DOI,文献DOI怎么找? 1546563
邀请新用户注册赠送积分活动 720607
科研通“疑难数据库(出版商)”最低求助积分说明 712086